MDEV 090, Elementary Algebra, Guided Notebook, Fall 2015

Topic 10.1 Guided Notebook

Topic 10.2 Guided Notebook

Topic 10.3 Guided Notebook

HOW THE BRAIN LEARNS

How the Brain Learns: Lesson 1 Neurons

Topic 10.4 Guided Notebook

Topic 10.5 Guided Notebook

Topic 10.6 Guided Notebook

How the Brain Learns: Lesson 2 Memory

Metacognitive Skills: MDEV 090 Exam 1

Topic 11.1 Guided Notebook

How the Brain Learns: Lesson 3 Practice Makes Permanent

Topic 11.2 Guided Notebook

How the Brain Learns: Lesson 4 Factors that Affect Learning

Topic 11.3 Guided Notebook

Topic 11.4 Guided Notebook

Topic 11.5 Guided Notebook

Topic 11.6 Guided Notebook

Topic 11.7 Guided Notebook

Metacognitive Skills: MDEV 090 Exam 2

Topic 11.8 Guided Notebook

Topic 12.1 Guided Notebook

Topic 12.2 Guided Notebook

Topic 12.3 Guided Notebook

Topic 12.4 Guided Notebook

Topic 12.5 Guided Notebook

Topic 13.1 Guided Notebook

Topic 13.2 Guided Notebook

Metacognitive Skills: MDEV 090 Exam 3

Topic 13.3 Guided Notebook
<table>
<thead>
<tr>
<th>Topic</th>
<th>Guided Notebook</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>13.5</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>14.1</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>14.2</td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>14.3</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>14.4</td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>15.1</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>15.2</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>15.3</td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>15.4</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>15.7</td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>15.8</td>
<td></td>
<td>143</td>
</tr>
<tr>
<td>15.4</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>Exam 4</td>
<td>MDEV 090 Exam 4</td>
<td>135</td>
</tr>
<tr>
<td>15.2</td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>15.3</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>15.4</td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>15.7</td>
<td></td>
<td>143</td>
</tr>
<tr>
<td>15.8</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>Exam 4</td>
<td>MDEV 090 Final exam</td>
<td>149</td>
</tr>
</tbody>
</table>
Topic 10.1 Guided Notebook
The Real Number System

Topic 10.1 Objective 1: Classify Real Numbers

Write down the definition for each bold term listed below.

<table>
<thead>
<tr>
<th>Set</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty set</td>
<td>Null symbol</td>
</tr>
</tbody>
</table>

Read and summarize the CAUTION statement on 10.1-3.

Finite sets | **Infinite sets**

Write the definition of **Natural Numbers** and illustrate the set.

Write the definition of **Whole Numbers** and illustrate the set.

Write the definition of **Integers** and illustrate the set.

Write the definition of **Rational Numbers**.

Write the definition of **Irrational Numbers**.

Read and summarize the CAUTION statement on 10.1-7.

Write the definition of **Real Numbers**.
Topic 10.1

Draw the Figure 1 on page 10.1-8, showing the relationships involving the set of real numbers.

Example 1:
Study the solutions for Example 1 parts a–c on page 10.1-9 and record the answers below. Complete parts d–h on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Classify each real number as a natural number, whole number, integer, rational number and/or irrational number. Each number may belong to more than one set.

a. 8

b. –4.8

c. \(\sqrt{10} \)

d. –7

e. \(-\frac{4}{7} \)

f. \(\sqrt{25} \)

g. 0

h. 3.45

Read and summarize the CAUTION Statement on page 10.1-10.

Topic 10.1 Objective 2: Plot Real Numbers on a Number Line

Draw the **real number line** labeling the following: Negative real numbers, Positive real numbers, Zero and the Origin.

What does it mean to **plot**, or **graph**, a real number?

Topic 10.1 Objective 3: Find the Opposite of a Real Number

What is the definition of **Opposites**?
What is the **Double-Negative Rule**?

What is the procedure for **Finding the Opposite of a Real Number**?

Topic 10.1 Objective 4: Find the Absolute Value of a Real Number

Write down the definition for **Absolute Value**.

Example 4:
Study the solutions for Example 4 parts a and b on page 10.1-17 and record the answers below. Complete parts c–e on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Find each absolute value.

a. $|3|$
b. $|-5|$
c. $|-1.5|$
d. $|\frac{-7}{2}|$
e. $|0|

Topic 10.1 Objective 5: Use Inequality Symbols to Order Real Numbers

In your own words, record the method used to find the **Order of Real Numbers**.

1.
2.
3.

Example 5:
Complete Example 5 on page 10.1-20 and record the answers below.

Fill in the blank with the correct symbol, $<$, $>$, or $=$ to make a true statement.

a. $0 \underline{\hspace{2cm}} 3$
b. $-3.7 \underline{\hspace{2cm}} -1.5$
c. $\frac{-5}{4} \underline{\hspace{2cm}} -1.25$
d. $\frac{4}{5} \underline{\hspace{2cm}} \frac{5}{9}$

What are **non-strict inequalities**?

What are **strict inequalities**?
Example 6:
Study the solutions for Example 6 parts a and b on pages 10.1-22 and record the answers below. Complete parts c–e on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Determine if each statement is true or false.

a. \(\frac{7}{10} \leq 0.7 \)

b. \(-8 \geq 4\)

c. \(-2 \geq -4\)

d. \(\frac{7}{3} \leq 1.3\)

e. \(\frac{9}{4} \neq -2.75\)

Topic 10.1 Objective 6: Translate Word Statements Involving Inequalities

Complete the following table.

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Key Words</th>
<th>Word Statement</th>
<th>Mathematical Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\leq)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\geq)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\neq)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 8:
Study the solution for Example 8 part a on page 10.1-26 and record the answer below. Complete parts b and c on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Use real numbers and write an inequality that represents the given comparison.

a. Orchid Island Gourmet Orange Juice sells for $6, which is more than Florida’s Natural Premium Orange Juice that sells for $3.

b. In 2008 there were 4983 identity thefts reported in Colorado, which is different than the 4433 reported in Missouri during the same year. (Source: census.gov/compendia/)

c. On May 20, 2010, the Dow Jones Industrial Average closed at 10,068.01 which was less than on May 19, 2010, when it closed at 10,444.37. (Source: dowjonesclose.com/)
Topic 10.2 Guided Notebook

Topic 10.2 Adding and Subtracting Real Numbers

Topic 10.2 Objective 1: Add Two Real Numbers with the Same Sign

What is result of adding numbers called? What are the numbers being added called?

What are the three steps for **Adding Two Real Numbers with the Same Sign**?

1.

2.

3.

Example 1:
Study the solutions for Example 1 on page 10.2-3 and record the answers below. View the popups on page 10.2-4 for the visualization of examples 1a and 1b.

Add
a. \(2 + 5 \)
b. \(-4 + (-3) \)

Example 2:
Study the solutions for Example 2 parts a and b on page 10.2-4 and record the answers below. Complete parts c and d on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Add.

a. \(-3.65 + (-7.45) \)
b. \(\frac{4}{5} + \frac{13}{5} \)
c. \(\frac{3}{5} + \left(\frac{-7}{2} \right) \)
d. \(-3 \frac{1}{3} + \left(-5 \frac{1}{4} \right) \)

Topic 10.2 Objective 2: Add Two Real Numbers with Different Signs

What are the three steps for **Adding Two Real Numbers with Different Signs**?

1.

2.

3.
Example 3:
Study the solutions for Example 3 on page 10.2-7 and record the answers below. View the popups on page 10.2-9 for the visualization of example 3a and 3b on a number line.

Add.
\begin{align*}
a. \quad 7 + (-4) \\
b. \quad -6 + 4 \\
c. \quad 6 + (-6)
\end{align*}

What are additive inverses?

What is the rule for Adding a Real Number and Its Opposite?

What is the procedure for Adding Two Real Numbers?

Example 4:
Study the solutions for Example 4 parts a and b on page 10.2-10 and record the answers below. Complete parts c and d on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Add.
\begin{align*}
a. \quad -12 + (-9) \\
b. \quad 7 + (-18) \\
c. \quad \frac{4}{3} + \frac{5}{6} \\
d. \quad -5.7 + 12.3
\end{align*}

Topic 10.2 Objective 3: Subtract Real Numbers

What is meant by the difference of numbers?

What is the subtrahend? What is the minuend?

What is the definition of Subtracting Two Real Numbers?
Example 5:
Study the solutions for Example 5 parts a–d on page 10.2-12 and record the answers below. Complete parts e–g on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Subtract.

a. 15 – 6
 b. 9 – 17
 c. −4.5 − 3.2
 d. \(\frac{7}{3} - \frac{2}{5} \)

e. −4.9 − (−2.5)
f. \(\frac{3}{4} - \left(-\frac{2}{5} \right) \)
g. 4 − (−4)

Topic 10.2 Objective 4: Translate Word Statements Involving Addition or Subtraction

Complete the table below found on page 10.2-15.

<table>
<thead>
<tr>
<th>Key Word</th>
<th>Word Phrase</th>
<th>Mathematical Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td></td>
<td>4 + 7</td>
</tr>
<tr>
<td></td>
<td>3 added to 8</td>
<td>–4 + 6</td>
</tr>
</tbody>
</table>

Example 6:
Study the solutions for Example 6 on page 10.2-15 and record the answers below.

Write a mathematical expression for each word phrase.

a. Five more than −8
b. 8.4 increased by 0.17
c. The sum of −4 and −10
d. 15 added to −30
Complete the table below found on page 10.2-18.

<table>
<thead>
<tr>
<th>Key Word</th>
<th>Word Phrase</th>
<th>Mathematical Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased by</td>
<td></td>
<td>9 – 7</td>
</tr>
<tr>
<td>6 subtracted from 3</td>
<td></td>
<td>25 – 10</td>
</tr>
</tbody>
</table>

Read and summarize the CAUTION statement on page 10.2-18.

Example 7:
Study the solutions for Example 7 parts a–c on page 10.2-19 and record the answers below. Complete parts d and e on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Write a **mathematical expression** for each word phrase.

d. Fifteen subtracted from 22.

e. The **difference** of 7 and 12.

f. Eight decreased by 11.

g. 20 less than the difference of 4 and 9.

h. The **sum** of 8 and 13, decreased by 5.

Topic 10.2 Objective 5: Solve Applications Involving Addition or Subtraction of Real Numbers

Example 9:
Work through Example 9 on page 10.2-23 and record the answer below. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

The record high temperature in Alaska was 100°F recorded in 1915 at Fort Yukon. The record low was –80°F recorded in 1971 at Prospect Creek Camp. What is the difference between these record high and low temperatures? (Source: National Climatic Data Center)
Topic 10.3 Guided Notebook

Topic 10.3 Multiplying and Dividing Real Numbers

Topic 10.3 Objective 1: Multiply Real Numbers

Multiplication is simply repeated ________________.

What is the **product**? What are **factors**?

Record the steps for **Multiplying Two Real Numbers**.

1.

2.

3.

Example 2:

Study the solution for Example 2 part a on page 10.3-5 and record the answer below. Complete parts b–d on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Multiply.

a. \(\left(\frac{-3}{4}\right)\left(-\frac{7}{9}\right)\)
b. \(5 \cdot \frac{3}{10}\)
c. \(\frac{3}{8} \times 0\)
d. \(\left(\frac{2}{3}\right)\left(\frac{6}{14}\right)\)

Example 3:

Study the solutions for Example 3 parts a and b on page 10.3-6 and record the answers below. Complete parts c and d on your own and check your answers by clicking on your link. If your answers are incorrect, watch the video to find your error.

Multiply.

a. \((1.4)(-3.5)\)
b. \((10.32)(0)\)
c. \(-\frac{3}{5} \times 6\frac{1}{3}\)
d. \((4)(5.8)\)
Topic 10.3 Objective 2: Divide Real Numbers

In the following equations, identify the **quotient**, **dividend**, and the **divisor**.

\[20 \div 4 = 5 \quad \frac{20}{4} = 5 \]

What is the **reciprocal** or multiplicative inverse?

What is the definition of **reciprocals**?

Click on the link for the first CAUTION statement on page 10.3-8, and show why 0 does not have a reciprocal.

Summarize the second CAUTION statement on page 10.3-8.

What is the definition of **Division of Two Real Numbers**?

Record the steps for **Dividing Two Real Numbers Using Absolute Value**.

1.

2.

3.

4.
Example 6:
Study the solutions for Example 6 parts a and b on page 10.3-12 and record the answers below. Complete parts c and d on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Divide.

\[
\begin{align*}
a. \quad & \frac{48.6}{-3} \\
b. \quad & -\frac{7}{5} \div (-3) \\
c. \quad & -\frac{59.4}{4.5} \\
d. \quad & 6\frac{5}{8} \div 2\frac{1}{4}
\end{align*}
\]

According to the CAUTION statement on page 10.3-13, what are the three ways to write a negative quotient?

Topic 10.3 Objective 3: Translate Word Statements Involving Multiplication or Division

Complete the table below that is found on page 10.3-14.

<table>
<thead>
<tr>
<th>Key Word</th>
<th>Word Phrase</th>
<th>Mathematical Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-7 \text{ times } -9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One-third of 27</td>
<td>0.15(200)</td>
</tr>
<tr>
<td>Twice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What are four symbols that can be used to indicate multiplication?

Example 7:
Study the solutions for Example 7 parts a–d on page 10.3-15 and record the answers below. Complete parts e and f on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Write a mathematical expression for each word phrase.

\[
\begin{align*}
a. \quad & \text{The product of 3 and } -6 \\
b. \quad & 30\% \text{ of } 50 \\
c. \quad & \text{Three times the sum of } 10 \text{ and } 4 \\
d. \quad & \text{Three-fourths of } 20, \text{ increased by } 7 \\
e. \quad & \text{The difference of } 2 \text{ and the product of } 8 \text{ and } 15 \\
f. \quad & \text{3 increased by } 15, \text{ times } 4
\end{align*}
\]
Rework part 7d as “three-fourths of 20 increased by 7.” To see the difference, click on the link on page 10.3-18.

Complete the table below from page 10.3-18.

<table>
<thead>
<tr>
<th>Key Word</th>
<th>Word Phrase</th>
<th>Mathematical Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quotient</td>
<td>24 divided by -3</td>
<td></td>
</tr>
<tr>
<td>Per</td>
<td>4/9</td>
<td></td>
</tr>
</tbody>
</table>

Example 8:
Study the solutions for Example 8 parts a and b on page 10.3-19 and record the answers below. Complete parts c and d on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Write a mathematical expression for each word phrase.

a. The ratio of 10 to 35
b. 60 divided by the sum of 3 and 7
c. The quotient of 20 and 4
d. The difference of 12 and 7, divided by the difference of 8 and -3

Rework part 8d as “the difference of 12 and 7 divided by the difference of 8 and -3.” Click on the link on page 10.3-20 to see the difference.

Topic 10.3 Objective 4: Solve Applications Involving Multiplication or Division

Example 10:
Study the solution for Example 10 on page 10.3-22 and record the answer below.

The amount of acid in a solution can be found by multiplying the volume of solution by the percent of the solution (written in decimal form). How much acid is in 20 liters of a 3% solution?
HOW THE BRAIN LEARNS

During the first few weeks of the semester we will have lessons regarding the brain and how it learns interspersed with the regular lessons. Why? ...you may ask, because one of the goals of this math class is to improve your study skills to help you with your future math courses and other college courses and understanding how your brain works will be one way to accomplish that.

Understanding how the brain learns will help you understand the reasoning behind the study cycle that is used in this class and how each step in the cycle is essential.

Figure 1: Study Cycle

This will lead to improving your metacognition skills, which are the skills for you to diagnose what, or if you have learned the content.

These lessons are not just busy work. Understanding why you are doing something and how it is helping you learn can be a key to your success. It is all tied together with the course in the effort to make you the best student you can be and a successful student.

The lessons will consist of information from resources for you to read followed by activities or questions for you to complete. So, let’s get started with the first lesson.
How the Brain Learns: Lesson 1 Neurons

Objective: Upon completing this lesson, you will be able to identify the parts of the neuron and their function(s).

The brain is composed of a trillion cells of at least two known types, nerve cells (neurons) and glial cells. Neurons represent about 10% of the total – roughly 100 billion. Glial cells hold the neurons together and act as filters to keep harmful substances out of the neurons. Each brain neuron is about one hundredth of the size of the period at the end of this sentence. (Sousa, 2011)

Even though most of the neurons where information is stored are present at birth, there is lifelong growth of the support and connecting cells that enrich the communication between neurons. Dendrites are treelike extensions (dendrite actually comes from the Greek word meaning tree-like) that protrude from a neuron and receive information from other neurons and transmit information to other neurons along axons. The dendrites receive electrical impulses from other neurons and transmit them along a long fiber, the axon. Each neuron can have up to 10,000 branches, dendrites, emerging from its core but only one axon.

New dendrites grow as branches from frequently activated neurons. Once these dendrites are formed, the brain’s plasticity allows it to reshape and reorganize the networks of dendrite-neuron connections in response to increased or decreased use of these pathways.

Axons are surrounded with a fatty layer of tissue called the myelin sheath which helps speed up the neural impulses between neuron. The sheath insulates the axon from the other cells and increases the speed of impulse transmission. It makes up what is called the “white matter” in our brains. Practice thickens the myelin sheath by requiring repetition of the same impulses again and again. Both quantity (repetition) and quality (correctness) of practice is important to myelinate axons.

Figure 2: Neuron http://www.apppsychology.com/Book/Biological/neuroscience.htm
How do we get myelin onto our nerve axons? Use the neuron again and again or in one word... practice. Practice, in a variety of formats, helps fatten up the myelin sheath, which strengthens the connections between neurons in different area of our brain and helps those neurons perform in unison. Practice also helps grow and thicken the dendrites.

Impulses are sent between neurons from the axon’s terminal buttons by shooting neurotransmitters across the synapse. A synapse is a little space between neurons because neurons do not touch each other. Neurotransmitters are brain chemicals like dopamine, amino acids serotonin, and tryptophan carry information across the space separating the axon extensions of one neuron, from the dendrite that leads to the next neuron on the pathway. There are also neurotransmitters that may inhibit signals to be passed between cells.

Syn-naps is a word play on synapse to remind us that there needs to be a brain rest when the neurotransmitter can be restored to be available to release the next message. When neurotransmitters are depleted by too much information traveling through a nerve circuit without a break, the speed of transmission along the nerve slows down to a less efficient level. When this happens, information processing takes longer. (Willis, 2006)

While learning does not increase the number of brain cells, it does increase their size, their dendrites, and their ability to form more complex networks. The brain goes through physical and chemical changes each time it learns. (Sousa, How the Brain Learns, 2011)

Forming and strengthening the connections between the neurons in our brain is the foundation of learning. The next brain lesson will introduce other concepts to help you understand and take charge of your learning process.

How The Brain Learns, Lesson 1

How the Brain Learns, Lesson 1: Neurons

Please submit this completed worksheet with Print Lab 2.

1. Sketch the neuron and label the key parts as shown in Figure 2.

2. Define the following terms and their function if they have one.
 a. neuron
 b. glial cells
 c. dendrite
 d. axon
 e. plasticity
 f. neurotransmitter
 g. synapse
 h. myelin sheath

3. What physical effect does practice have on your brain?
Topic 10.4 Guided Notebook
Topic 10.4 Exponents and Order of Operations

Topic 10.4 Objective 1: Evaluate Exponential Expressions

Write down an exponential expression. Label and explain the meaning of each of the following in your expression: *exponent*, *power*, and *base*.

What is the definition of an *exponential expression*?

When we raise a number to the first power, the exponent is _________. Any real number raised to the ______________ power is equal to _______________.

If no exponent is written it is assumed to be an ______________________________.

Example 1:
Study the solutions for Example 1 on page 10.454 and record the answers below.

Evaluate each exponential expression.

a. \(3^{4}\)
b. \(\left(\frac{2}{3}\right)^{4}\)
c. \((0.3)^{2}\)

When is a negative sign part of the base? Write an example showing each situation.

Example 2:
Study the solutions for Example 2 parts a and b on page 10.456 and record the answers below. Complete part c on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Evaluate each exponential expression.

a. \((-5)^{4}\)
b. \(-4^{2}\)
c. \((-2)^{4}\)

When the base of an exponential expression is negative, how do we use the exponent to determine the sign of the result?
Topic 10.4

Topic 10.4 Objective 2: Use the Order of Operations to Evaluate Numeric Expressions

List the **Order of Operations**?

1.
2.
3.
4.

Summarize the TIP given in the link on page 10.4-7.

Example 3:
Study the solutions for Example 3 on page 10.4-8 and record the answers below.

Simplify each expression.

a. \(10 - 4^2\)
b. \(12 ÷ 4 + 8\)

Watch the illustrations in the two links found on page 10.4-9. Summarize what you learned.

Example 4:
Complete Example 4 on page 10.4-9 and record the answers below. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Simplify each expression.

a. \(15 - 3 + 6 - 8 + 7\)
b. \(3 \cdot 15 ÷ 5 \cdot 6 ÷ 2\)
Example 5:
Study the solutions for Example 5 on page 10.4-9 and record the answers below.

Simplify each expression.

a. \(5 + (4 - 2)^2 - 3^2 \)
b. \([5 - 9]^2 + 12 \div 4 \)

Example 6:
Complete Example 6 on page 10.4-11 and record the answers below. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Simplify each expression.

a. \((-5 + 8) \cdot 3 \)
b. \((10 - 4)^2 \)
c. \(12 \div (4 + 8) \)

Write down five grouping symbols and their names.

We must simplify expressions separately in the _______________ and _______________ of a fraction before _______________.

.
Example 7:
Study the solution for Example 7 part a on page 10.4-12 and record the answer below. Complete part b on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Simplify each expression.

a. \(\frac{-2(3) + 6^2}{(-4)^2 - 1}\)

b. \(7^2 - 5(3) \div 2 + 8\)

What are nested grouping symbols?

Example 8:
Study the solution for Example 8 part a on page 10.4-14 and record the answer below. Complete part b on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Simplify each expression.

a. \(\left[2^3 - 3(5 - 7)\right] \div 6 - 9\)

b. \(\frac{-5^2 + 2^3 - 10}{4^2 - 6 \cdot 5}\)

Example 9:
Complete Example 9 on page 10.4-15 and record the answers below. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Simplify each expression.

a. \(\frac{3 \cdot 5 - 1}{10 - 2 - 2}\)

b. \(36 \div \frac{8}{3^2 - 5} + (-2)^3\)

c. \(\frac{1 - 3}{3 - 5} \div \frac{1}{2} - 1\)
Topic 10.5 Guided Notebook
Topic 10.5 Variables and Properties of Real Numbers

Topic 10.5 Objective 1: Evaluate Algebraic Expressions

Write down the definitions for the following terms.

Variable

Constant

Algebraic expression

What operation is performed when a constant appears next to a variable?

Describe the process to **Evaluate Algebraic Expressions**.

Read and summarize the CAUTION statement on page 10.5-5.

Example 3:
Study the solution for Example 3 part a on page 10.5-7 and record the answer below. Complete part b on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Evaluate each algebraic expression for the given values of the variables.

a. \(\frac{x^2 + 6}{5x - 2} \) for \(x = 2 \)

b. \(|3y - 4| + 7y - 1 \) for \(y = -3 \)
Example 4:
Study the solution for Example 4 part a on page 10.5-8 and record the answer below. Complete part b on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Evaluate each algebraic expression for the given values of the variables.

a. \(12a + 7b\) for \(a = -4\) and \(b = 12\)

b. \(x^2 - 2xy + 3y^2\) for \(x = 3\) and \(y = -1\)

Topic 10.5 Objective 2: Use the Commutative and Associative Properties

Describe the **Commutative Property of Addition** and show an example.

Describe the **Commutative Property of Multiplication** and show an example.

According to the CAUTION statement on page 10.5-10, what operations **do not** have commutative properties? Why not?

Example 5:
Study the solutions for Example 5 on page 10.5-11 and record the answers below.

Use the given property to rewrite each statement. Do not simplify.

b. Commutative property of multiplication: \(-2 \times 6 = \) ______________

c. Commutative property of addition: \(5.03 + 9.2 = \) ______________

Describe the **Associative Property of Addition** and show an example.

Describe the **Associative Property of Multiplication** and show an example.

According to the CAUTION statement on page 10.5-12, what operations **do not** have associative properties? Why not?
Example 6:
Study the solutions for Example 6 on page 10.5-13 and record the answers below.

Use the given property to rewrite each statement. Do not simplify.

a. Associative property of addition: \[\left(\frac{2}{3} + \frac{1}{6} \right) + \frac{5}{6} = \]

b. Associative property of multiplication: \[5 \cdot (2 \cdot 13) = \]

Example 7:
Study the solutions for Example 7 on page 10.5-14 and record the answers below.

Use the commutative and associative properties to simplify each expression.

b. \[(3 + x) + 7 \]

b. \[(8y) \left(\frac{1}{2} \right) \]

Topic 10.5 Objective 3: Use the Distributive Property

Describe the **Distributive Property** and show an example.

Show two ways to write the Distributive Property.

Does the Distributive Property apply to subtraction? If yes, show an example.

According to the pop up on page 10.5-17, explain why the Distributive Property extends to more than two terms.

Example 8:
Study the solutions for Example 8 on page 10.5-17 and record the answers below.

Use the distributive property to remove parentheses, and write the product as a sum. Simplify if possible.

a. \[9(x + 2) \]

b. \[(7x - 5) \cdot 3 \]
How do you find the Opposite of an Expression?

Example 9:
Study the solution for Example 9 part a on page 10.5-19 and record the answer below. Complete parts b and c on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Use the distributive property to remove parentheses, and write the product as a sum. Simplify if possible.

a. \(2(4y + 3z - 5)\)
b. \(-6(3y - 8)\)
c. \(-(2a - 7b + 8)\)

Example 10:
Study the solutions for Example 10 on page 10.5-20.

Topic 10.5 Objective 4: Use the Identity and Inverse Properties

Show an example of the **Identity Property of Addition**.

Show an example of the **Identity Property of Multiplication**.

Show an example of the **Inverse Property of Addition**.

Show an example of the **Inverse Property of Multiplication**.

Example 11:
Complete Example 11 on page 10.5-23 and record the answers below. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Identify the property of real numbers illustrated in each statement.

a. \(-4 \cdot 1 = -4\)
b. \((-5 + 5) + x = 0 + x\)

c. \(0 + y = y\)
d. \(\frac{1}{2} \cdot 2x = x\)
Topic 10.6 Guided Notebook
Topic 10.6 Simplifying Algebraic Expressions

Topic 10.6 Objective 1: Identify Terms, Coefficients, and Like Terms of an Algebraic Expression

Write down the definitions for the following.

Terms

Variable terms

Constant terms

Coefficient

Read and summarize the CAUTION statement on page 10.6-4.

Example 1:
Study the solutions Example 1 parts a and b on pages 10.6-4 and record the answers below. Complete part c on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Determine the number of terms in each expression and list the coefficients for each term.

a. $3x^2 + 7x - 3$

b. $4x^3 - \frac{3}{2}x^2 + x - 1$

c. $3x^2 - 2.3x + x - \frac{3}{4}$

What are **like terms**? Show a pair of like terms and a pair of unlike terms.

Are constants like terms?
Example 2:
Study the solution for Example 2 part a on page 10.6-6 and record the answer below. Complete part b on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Identify the like terms in each algebraic expression.

a. \(5x^2 + 3x - 6 + 4x^2 - 7x + 10 \)
 b. \(3.5a^2 + 2.1ab + 6.9b^2 - ab + 8a^2 \)

Topic 10.6 Objective 2: Simplify Algebraic Expressions

Example 3:
Study the solutions for Example 3 parts a and b on pages 10.6-7 and record the answers below. Complete parts c–e on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Simplify each algebraic expression by combining like terms.

a. \(5x - 2x \)
 b. \(6x^2 - 12x - 3x^2 + 4x \)
 c. \(3z - 2z^2 + 7z^2 \)

\[d. \ 6x^2 + 2x + 4x + 3 \]
\[e. \ -3x + 5 - y + x - 8 \]

What are the steps for Simplifying an Algebraic Expression?

1.

2.

Example 4:
Study the solutions for Example 4 parts a and b on page 10.6-9. Complete parts c and d on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Simplify each algebraic expression.

\[c. \ 5(x - 6) - 3(x - 7) \]
\[d. \ 2(5z + 1) - (3z - 2) \]
Topic 10.6 Objective 3: Write Word Statements as Algebraic Expressions

Write down the six key words that indicate addition.

Write down the six key words that indicate subtraction.

Write down the seven key words that indicate multiplication.

Write down the five key words that indicate division.

What can we use to represent unknown values within a verbal description?

Example 5:
Study the solutions for Example 5 parts a–c on pages 10.6-12 and record the answers below. Complete parts d–f on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Write each word statement as an **algebraic expression.** Use x to represent the unknown number.

b. Twenty decreased by a number

c. The product of sixteen and a number

d. Five more than twice a number

e. Three-fourths of the square of a number

f. The quotient of 12 and a number, increased by the number

g. The sum of a number and 4, divided by the difference of the number and 9
Example 6:
Study the solutions to Example 6 parts a and b on page 10.6-14. Complete part c on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

c. The state of Texas has 10 fewer institutes of higher education than twice the number in Virginia. If we let \(n \) = the number of institutes in Virginia, express the number in Texas, in terms of \(n \). (Source: Statistical Abstract, 2010)

Topic 10.6 Objective 4: Solve Applied Problems Involving Algebraic Expressions

Example 7:
Study the solutions for Example 7 on page 10.6-15 and record the answers below.

The perimeter of a rectangle is the sum of the lengths of the sides of the rectangle. Use the following rectangle to answer the questions.

a. Write a simplified algebraic expression that represents the perimeter of the rectangle.

b. Use your result from part (a) to find the perimeter if \(x = 7 \).

Example 8:
Complete Example 8 on page 10.6-17 and record the answers below. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Based on data from the National Fire Protection Association, the number of residential property fires, in thousands, is given by \(2111x^2 - 1366x + 6959 \), where \(x \) = the number of years after 2000. The number of vehicle fires, in thousands, is given by \(-52.5x + 775\). (Source: nfpa.org)

a. Write a simplified algebraic expression for the difference between the number of residential property fires and the number of vehicle fires.

b. Use your result from part (a) to estimate the difference in 2010.
How the Brain Learns: Lesson 2 Memory

Objective: Upon completing this lesson, you will be able to define the three stages of memory and how memories go from one stage to another, as well as, what can be done to enhance the process.

The stages of memory are the following: sensory (or immediate), working (or short-term), and long-term. Immediate and working memories are temporary memories.

Figure 1: Stages of Memory
Image: http://healthpsych.psy.vanderbilt.edu/alcoholMemory_files/image007.jpg

Sensory memory operates subconsciously or consciously and holds data for up to 30 seconds. The individual’s experiences determine its importance. You cannot recall information that your brain does not retain. (Sousa, 2011)

Working memory, or short-term memory, is the place where conscious, rather than subconscious, processing occurs. When something is in working memory, it generally captures our focus and demands our attention. It involves the ability to hold and manipulate information for use in the immediate future. After repeated practice, working memories are set down as permanent neuronal circuits of axons and dendrites ready to be activated when information is needed. “Cells that fire together, wire together.” Practice results in repeated stimulation of the memory circuit. Like hikers along a trail who eventually carve a depression in the road, repeated practice stimulates cells in the memory circuit so that the circuit is reinforced and becomes stronger. Working memory is embedded by repetition into long-term memory, but it still needs periodic repetition for it to remain in your active memory bank and not gradually fade from disuse. (Willis, 2006)

Memories are not stored intact. Instead, they are stored in pieces and distributed in sites throughout the cerebrum (the largest part of the brain that coordinates mental actions). Which storage sites to select could be determined by the number of associations that the brain makes between new and past learning. The more connections made, the more understanding and
meaning the learner can attach to the new learning, and the more likely it is that it will be stored in different networks.

Figure 2: Creating a memory: (1) Neuron A receives a stimulus, which causes it to set off neuron B. (2) If neuron A fires again soon, a link is established. Later, neuron A can just fire weakly to set off neuron B. (3) The firing of neurons A and B may set off neighboring neurons C and D. If this happens repeatedly, the four cells become a network and will fire together in the future – forming a memory.

Just because you may feel you have learned the new information or skill doesn’t mean it will be transferred to long-term storage. Extensive research on retention indicates that 70 – 90 percent of new learning is forgotten within 18 to 24 hours after the lesson. Processing and transfer between working memory and long-term storage needs adequate time for encoding and consolidation of the new information into the storage networks. (Sousa, 2011)

Once the information is successfully retrieved, it still needs to be reviewed between four and seven times to ensure retention. (Willis, 2006)

Our goal is efficiently get information into the long term memory so we can recall it and make connections when needed.

How The Brain Learns, Lesson 2: Memory

Name ________________________

Please submit this completed worksheet with Print Lab 3.

1. Sketch the study cycle introduced in Lesson 1.

2. List and describe the three stages of memory.

3. What can help ‘move’ a memory from short-term to long-term storage?

4. How much memory can be lost in 18 – 24 hours if it’s not practiced?

5. How many times does information need to be reviewed to ensure that it’s retained?

6. Explain how you think the study cycle enhances the process of getting memories in long-term storage.
Metacognitive Skills: MDEV 090 Exam 1

Metacognitive skills refer to the ability to judge how well you have learned something and to effectively direct your own learning and studying. This is a self-evaluation tool designed to help you focus your studying and to improve your metacognitive skills with regards to this math class.

Use the following scale to complete the ‘Before Studying’ column and then the ‘After Studying’ column once you study.

5 I am confident I can do any problems in this category correctly.
4 I am confident I can do most of the problems in this category correctly.
3 I understand how to do the problems in this category, but I still make a lot of mistakes.
2 I feel unsure about how to do these problems.
1 I know I don’t understand how to do these problems.

Refer to this assessment after your test and circle any of the ratings you would change – this identifies the “disconnects” between what you thought you knew well and what you actually knew well.

<table>
<thead>
<tr>
<th>Topic or Skill</th>
<th>Before Studying</th>
<th>After Studying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform Operations with Fractions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Operations with Decimals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert between fractions, decimals and percents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1: Classify Real Numbers and Plot on a Number Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1: Find the Opposite and Absolute Value of a Real Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1: Use Inequality symbols and Translate Word Statements Involving Inequalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2: Adding with the same sign and with different signs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2: Subtracting Real Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.3: Multiplying and dividing real numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.4: Evaluate Exponential Expressions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.4: Order of Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5: Evaluating Algebraic Expressions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5: Commutative, Associative, and Distributive Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5: Identity and Inverse Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.6: Simplify Algebraic Expressions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.6: Write Word Statements as Algebraic Expressions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Topic 11.1 Guided Notebook

Topic 11.1 The Addition and Multiplication Properties of Equality

Topic 11.1 Objective 1: Identify Linear Equations in One Variable

Write down the definitions for the following terms.

Equation

Algebraic equation

What is the difference between an algebraic expression and an algebraic equation?

What is the definition of a **Linear Equation in One Variable**?

Write down the definitions for the following terms.

First-degree equation

Nonlinear equations

According to the popup on page 11.1-4, what are three of the five examples of nonlinear equations? Why are they nonlinear?

Watch the interactive video on page 11.1-5 and determine which types of equations are linear and which are nonlinear. Copy down any linear equations from the video.
Example 1:
Study the solutions for Example 1 on page 11.1-5 and record the answers below.

Determine if each is a linear equation in one variable. If not, state why.

a. \(4x + 3 - 2x\)

b. \(4x + 2 = 3x - 1\)

c. \(x^2 + 3x = 5\)

d. \(2x + 3y = 6\)

Topic 11.1 Objective 2: Determine If a Given Value Is a Solution to an Equation

Show the steps to show the truth of each of the following equations. View the popup to check.

\(-3 + (-2)^2 = -7 + 1\)

\(|10 - 26| + 4 = 3^2 + 11\)

What is the definition of Solve?

What is the definition of a Solution?

How do you determine if a given value is a solution to an equation?

Example 2:
Study the solutions for Example 2 parts a and b on page 11.1-7. Complete parts c and d on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Determine if the given value is a solution to the equation.

c. \(|a - 6| - 1 = 9 + a^2; \ a = -2\)

d. \(\frac{3}{5}w - \frac{1}{2} = -\frac{3}{10}w; \ w = \frac{5}{9}\)
Topics 11.1 Objective 3: Solve Linear Equations Using the Addition Property of Equality

What is a solution set?

What are equivalent equations?

What are the two forms of an isolated variable?

What is the Addition Property of Equality?

Does this property hold true for subtraction? Why or why not?

Example 3:
Study the solutions for Example 3 on page 11.1-11 and record the answers below. See how to check your answers by clicking on the link.

Solve.

a. \(x - 5 = 3 \)
b. \(y + \frac{2}{3} = \frac{1}{5} \)

Example 5:
Complete Example 5 on page 11.1-14 on your own. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Solve.

a. \(5x - 3 = 6x + 2 \)
b. \(-5w + 27 = 13 - 4w \)
Topic 11.1 Objective 4: Solve Linear Equations Using the Multiplication Property of Equality

What is the Multiplication Property of Equality?

Does this hold true for division? Why or why not?

Example 7:
Complete Example 7 on page 11.1-18 on your own. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Solve.

a. \(\frac{4}{3}x = 52 \)

b. \(2.2x = 6.93 \)

Topic 11.1 Objective 5: Solve Linear Equations Using Both Properties of Equality

The ____________________ property is used first for what purpose?

The ____________________ property is used second for what purpose?

Example 9:
Study the solution to Example 9 part a on page 11.1-21 and record the answer below. Complete part b on your own and check your answer by clicking on the link. If your answer is incorrect, view the video to find your error.

Use the properties of equality to solve each equation.

a. \(7y + 4 = 2y - 6 \)

b. \(2x - 14.5 = 0.5x + 50 \)
How the Brain Learns: Lesson 3 Practice Makes Permanent

Objective: Upon completing this lesson, you will be able to summarize the benefits practicing has in encoding information into your long term memory.

Recall the three stages of memory from lesson 2: sensory (or immediate), working (or short-term), and long-term. Immediate and working memories are temporary memories. Our goal in learning is to successfully encode and make connections in long term memory so we can correctly recall and utilize them when needed.

Practice is key to maintaining connections in the brain. We want to get the information to long-term memory and not just store it until test time. It is true that if you don’t use it, you lose it. The old saying “practice makes perfect” isn’t accurate. A more accurate version is ‘perfect practice make permanent.’

The study cycle is built around the concept of practicing effectively. As a student, you want to go beyond rote learning or just doing as little as possible to get by. You need to be in charge of your learning and knowing if you are actually learning (that’s metacognition). You need to strive to do your best and only you can control that.

Remember that we want to build dendrites from the neurons and increase the thickness of the myelin sheath surrounding the axons so the signals are stronger and permanent. We do this with PRACTICE.

Research states that we learn:

- 10% of what we READ
- 20% of what we HEAR
- 30% of what we SEE
- 50% of what we SEE and HEAR
- 70% of what is DISCUSSED with OTHERS
- 80% of what is EXPERIENCED PERSONALLY
- 95% of what we TEACH TO SOMEONE ELSE

Notice that the study cycle takes you through each of the experiences listed above but you have to participate in each step. Reading the lesson before coming to class gets you started. Watching the videos, attending and participating in lecture helps you see, hear and discuss the topics. Homework helps you experience the topics and labs are where you discuss the topics with others and have the opportunity to help others.

Each of these steps involves practice which helps build dendrites and thicken the myelin sheath!

Once a concept has been introduced and you are ready to practice,

1. be sure to TRY first before asking for help or referring to other resources. This will make your brain work on making connections and recalling on its own. Each time you recall information, you relearn it.
2. Disconnect. Turn off the cell phone and other distractions so your process doesn’t get interrupted.
3. Take breaks. Remember that the synapse needs a break now and then to replenish the neurotransmitters, so taking a break every 20 minutes or so can help. It’s best to practice over spaced intervals and not cram everything into one study time.
1. Describe another area, other than math, where you have had to practice to improve your understanding or skills.

2. Summarize in your own words how practice helps to encode information into the long term memory.

3. Explain why you think you should try a problem first before asking questions or looking at your notes.
Topic 11.2 Guided Notebook
Topic 11.2 Solving Linear Equations in One Variable

Topic 11.2 Objective 1: Solve Linear Equations Containing Non-Simplified Expressions
What should be done with non-simplified expressions before using the properties of equality?

Example 1:
Study the solution for Example 1 on page 11.2-3 and record the answer below. Check your answer by clicking on the link.

Solve: $4x + 7 - 2x = 5 - 3x - 3$

What should be done if the equation contains grouping symbols?

Example 2:
Complete Example 2 on page 11.2-4 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Solve: $7 - 2(4z - 3) = 3z + 1$

Example 3:
Complete Example 3 on page 11.2-5 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Solve: $2(3x - 1) - 5x = 3 - (3x + 1)$
Topic 11.2 Objective 2: Solve Linear Equations Containing Fractions

This objective discusses removing fractions. You do not have to remove the fractions, but it is an option. When an equation contains fractions, how can you remove the fractions?

Example 5:
Complete Example 5 on page 11.2-7 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Solve: \(\frac{w + 3}{2} - 4 = \frac{w}{3} \)

Example 6:
Complete Example 6 on page 11.2-9 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Solve: \(\frac{5x}{2} - \frac{7}{8} = \frac{3}{4} x - \frac{11}{8} \)

Topics 11.2 Objective 3: Solve Linear Equations Containing Decimals; Apply a General Strategy

This objective discusses removing decimals. You do not have to remove the decimals to solve it but it is an option. When an equation contains decimals, how can you remove the decimals?

Example 7:
Study the solution for Example 7 on page 11.2-10 and record the answer below. You may solve the equation without removing the decimals.

Solve. \(1.4x - 3.8 = 6 \)
Example 8:
Complete Example 8 on page 11.2-11 on your own. You may solve the equations without removing the decimals. Check your answer by clicking on the link.

Solve. \(0.1x + 0.03(7 - x) = 0.05(7)\)

Read and summarize the CAUTION statement on page 11.2-12.

What are the steps for A General Strategy for Solving Linear Equations in One Variable?

1.

2.

3.

4.

5.

6.

Topic 11.2 Objective 4: Identify Contradictions and Identities

What are the three cases for the solution of a linear equation in one variable?

When no variable terms remain and a false statement results the equation is called a(n) ____________________, which means what?
Topic 11.2

When no variable terms remain and a true statement results the equation is called a(n) ____________________, which means what?

Example 9:
Study the solution for Example 9 part a on page 11.2-16 and record the answer below. Complete part b on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Determine if the equation is a contradiction or an identity. State the solution set.

a. \(3x + 2(x - 4) = 5x + 7\)
b. \(3(x - 4) = x + 2(x - 6)\)

Topic 11.2 Objective 5: Use Linear Equations to Solve Application Problems

Example 11:
Complete Example 11 on page 11.2-18 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

In the U.S., the average pounds of red meat eaten, \(M\), is related to the average pounds of poultry eaten, \(P\), by the equation

\[100M = 14000 - 42P\]

Determine the average amount of poultry eaten if the average amount of red meat eaten is 100.1 pounds. (Source: U.S. Department of Agriculture)
How the Brain Learns: Lesson 4 Factors that Affect Learning

Objective: Upon completing this lesson, you will be able to identify the effects that sleep, nutrition, exercise and stress have on learning.

We discussed the physiological aspects to learning in Lesson 1 and we will go back to that in this final lesson regarding how your brain learns. Your brain is affected by various chemicals some of which are sent out by a part of your brain called the amygdala. The amygdala can be controlled by emotion and as a result it controls the type of neurotransmitters and chemicals in your brain. Some of these help the learning process and some inhibit the process. You can help avoid what’s sometimes referred to as an ‘amygdala hijacking’ by taking care of yourself. Here are a few things that you can control.

SLEEP – Because sleep is the time when the brain is least distracted by the sensory input bombarding it all day, it can devote a greater portion of its energy (metabolism) to organizing and filing the memories formed during the day. It is believed that memories that remain after one day are in the process of being successfully consolidated into neuronal pathways with new dendrites and synaptic connections. It is during sleep that the brain reaccumulates the greatest amount of the neurochemicals needed to stimulate dendritic growth. Studies suggest that if students review their notes thoroughly and stop and go to sleep when they begin to feel drowsy, the quality and quantity of retained memory is superior to extending the review time any number of hours once drowsiness has set in. This recognition of the need for sleep has led researchers to test and confirm their predictions that increasing sleep time from six or less to eight hours can increase memory and alertness up to 25 percent. (Willis, 2006)

NUTRITION – Your brain must manufacture the right proteins and fats to do things such as grow new connections or add myelin, the fatty sheath around axons. You do this by digesting proteins and fats in food and using the pieces, that is, the amino acids and fatty acids, to make the new brain proteins and fats. (Chudler) We won’t get into the details of certain food in this short lesson, but remember it is important to incorporate a healthy diet. Don’t skip meals, have healthy snacks throughout the day and drink plenty of water to maintain your energy.

EXERCISE – Regular physical activity can improve the cognitive function (process related to knowledge) and brain plasticity (ability to change). How much exercise? Many agree that half an hour of moderate exercise at least 5 days a week is a good place to start.

STRESS – It’s not easy to control stress and there are so many factors that can cause stress. But stress sets the amygdala off on a path that can hinder the learning experience. What you can do is try to recognize what may be causing stress and then finding a resource or person to help you deal with it. MSUM has resources available to help whether it be health related, personal or family issues or other factors. For example: maybe organizing your schedule could help if you feel overwhelmed by everything you need to get done. Utilize the resources that available to help you.
How The Brain Learns, Lesson 4

How The Brain Learns, Lesson 4: Other Factors that Effect Learning

Name ______________________________

Please submit this completed worksheet with Print Lab 5.

1. Why is sleep important to the learning cycle?

2. What part do good nutrition and exercise play in the learning cycle?

3. This is the final lesson on how the brain learns and this is the last item.

Please comment on any parts of these lessons that you found helpful in understanding how you can help yourself learn.
Topic 11.3 Guided Notebook

Topic 11.3 Introduction to Problem Solving

Topic 11.3 Objective 1: Translate Sentences into Equations

Complete Table 1 as found on page 11.3-3.

<table>
<thead>
<tr>
<th>Key Words That Translate to an Equal Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Example 1:
Study the solutions for Example 1 parts a and b on page 11.3-4 and record the answers below. Complete parts c and d on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Translate each sentence into an equation. Use x to represent each unknown number.

a. Fifty-two less than a number results in -21.

b. Three-fourths of a number, increased by 8, gives the number.

c. The difference of 15 and a number is the same as the sum of the number and 1.

d. If the sum of a number and 4 is multiplied by 2, the result will be 2 less than the product of 4 and the number.

Topic 11.3 Objective 2: Use the Problem-Solving Strategy to Solve Direct Translation Problems

What is a **mathematical model**?
What are the six steps of the Problem-Solving Strategy for Applications of Linear Equations?

1.

2.

3.

4.

5.

6.

Example 2:
Study the solution for Example 2 on page 11.3-7 and record the answer below.

Five times a number, increased by 17, is the same as 11 subtracted from the number. Find the number.

Example 3:
Complete Example 3 on page 11.3-9 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Four times the difference of twice a number and 5 results in the number increased by 50. Find the number.

Topics 11.3 Objective 3: Solve Problems Involving Related Quantities

For some problems, we need to find ________________________________ quantities that are related in some way.
Example 4:
Study the solution for Example 4 on page 11.3-10.

Example 5:
Complete Example 5 on page 11.3-11 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Disney’s *Toy Story* is 11 minutes shorter than its sequel *Toy Story 2*. *Toy Story 3* is 17 minutes longer than *Toy Story 2*. If the total running time for the three movies is 282 minutes, find the running time of each movie. (*Source: Disney*)

Topic 11.3 Objective 4: Solve Problems Involving Consecutive Integers

What are **consecutive integers**?

Give an **Example** of each of the following:

- Three consecutive integers
- Three consecutive even integers
- Three consecutive odd integers

What is the **General Relationship** of each of the following?

- Three consecutive integers
- Three consecutive even integers
- Three consecutive odd integers
Topic 11.3

Read and summarize the CAUTION statement on page 11.3-13.

Example 6:
Complete Example 6 on page 11.3-14 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

The sum of two consecutive integers is 79. Find the two integers.

Example 7:
Complete Example 7 on page 11.3-15 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Three consecutive even integers add to 432. Find the three integers.

Topic 11.3 Objective 5: Solve Problems Involving Value

Example 8:
Complete Example 8 on page 11.3-16 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Ethan’s cell phone plan costs $34.99 per month for the first 700 minutes, plus $0.35 for each additional minute. If Ethan’s bill is $57.39, how many minutes did he use?
Topic 11.4 Guided Notebook

Topic 11.4 Formulas

Topic 11.4 Objective 1: Evaluate a Formula

What is the definition of a *Formula*?

What is the *distance formula*?

Example 1:
Study the solution for Example 1 on page 11.4-3 and record the answer below.

A car travels at an average speed (rate) of 55 miles per hour for 4 hours. How far does the car travel?

Read and summarize the CAUTION statement on page 11.4-4.

Example 2:
Study the solution for Example 2 part a on page 11.4-4 and record the answer below. Complete part b on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Evaluate the Devine Formula to find the ideal body weight of each person described.

- a. A man 72 inches tall

- b. A woman 66 inches tall

Look at the two popup boxes on page 11.4-5 and write down the following formulas.

- **Area**

- **Perimeter**

- **Volume**
Example 3:
Study the solution for Example 3 part a on page 11.4-6 and record the answer below. Complete part b on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

a. The top of a stainless steel sink is shaped like a square with each side measuring \(15 \frac{3}{4}\) inches long. How many inches of aluminum molding will be required to surround the outside of the sink?

b. A yield sign has the shape of a triangle with a base of 3 feet and a height of 2.6 feet. Find the area of the sign.

Topic 11.4 Objective 2: Find the Value of a Non-Isolated Variable in a Formula

Example 4:
Study the solution for Example 4 on page 11.4-8 and record the answer below.

The perimeter of a rectangle is given by the formula \(P = 2l + 2w\), if \(P = 84\) cm and \(l = 26\) cm, find \(w\).

What is the formula for **simple interest**? Be sure to identify the variables.

Example 5:
Complete Example 5 on page 11.4-9 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Paige has invested \$15,000 in a certificate of deposit (CD) that pays 4% simple interest annually. If she earns \$750 in interest when the CD matures, how long has Paige invested the money?
What is the formula that relates Fahrenheit and Celsius measures of temperature?

Example 6:
Complete Example 6 on page 11.4-10 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

During the month of February, the average high temperature in Montreal, QC is \(-4.6 ^\circ C\) while the average high temperature in Phoenix, AZ is 70.7° F. (*Source: World Weather Information Service*)

a. What is the equivalent Fahrenheit temperature in Montreal?

b. What is the equivalent Celsius temperature in Phoenix?

Topics 11.4 Objective 3: Solve a Formula for a Given Variable

What does it mean to **solve a formula for a given variable**?

Example 7:
Study the solutions for Example 7 parts a and b on page 11.4-11 and record the answers below. Complete part c on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Solve each formula for the given variable.

a. Selling price: \(S = C + M \) for \(M \)

b. Area of a triangle: \(A = \frac{1}{2}bh \) for \(b \)

c. Perimeter of a rectangle: \(P = 2l + 2w \) for \(l \)
Topic 11.4 Objective 4: Use Geometric Formulas to Solve Applications

Example 8:
Study the solution for Example 8 on page 11.4-14 and record the answer below.

An above-ground pool is shaped like a circular cylinder with diameter of 28 ft and a depth of 4.5 ft. If 1 ft3 ≈ 7.5 gal, how many gallons of water will the pool hold? Use $\pi = 3.14$ and round to the nearest thousand gallons.

Example 9:
Complete Example 9 on page 11.4-15 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Terrence wants to have a new floor installed in his living room, which measures 20 ft by 15 ft. Extending out 3 ft from one wall is a fireplace in the shape of a trapezoid with base lengths of 4 ft and 8 ft.

a. Find the area that needs flooring.

b. If the flooring costs $5.29 per square foot, how much will Terrence pay for the new floor? (Assume there is no wasted flooring.)

Example 10:
Work through Example 10 on page 11.4-17 and record the answer below. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

The roundabout intersection with the top view shown in the figure will be constructed using concrete pavement 9 inches thick. How many cubic yards of concrete will be needed for the roundabout? Use $\pi \approx 3.14$.
Topic 11.5 Guided Notebook

Topic 11.5 Geometry and Uniform Motion Problem Solving

Topic 11.5 Objective 1: Solve Problems Involving Geometry Formulas

Example 1:
Study the solution for Example 1 on page 11.5-3 and record the answer below.

A green on a miniature golf course has a rectangular boundary. The length of the boundary is six feet longer than twelve times its width. If the perimeter is 103 feet, what are the dimensions of the green?

Example 2:
Complete Example 2 on page 11.5-5 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

The blade of a canoe paddle is in the shape of an isosceles triangle so that two sides have the same length. The two common sides are each 4 inches longer than twice the length of the third side. If the perimeter is 48 inches, find the lengths of the sides of the blade.

Example 3:
Complete Example 3 on page 11.5-6 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

The Triangle Drive In has been a local favorite for hamburgers in Fresno, CA since 1963. It is located on a triangular-shaped lot. One side of the lot is 4 meters longer than the shortest side, and the third side is 32 meters less than twice the length of the shortest side. If the perimeter of the lot is 180 meters, find the length of each side.
Example 4:
Complete Example 4 on page 11.5-7 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

A bathtub is surrounded on three sides by a vinyl wall enclosure. The height of the enclosure is 20 inches less than three times the width, and the length is 5 inches less than twice the width. If the sum of the length, width, and height is 185 inches, what is the volume of the enclosed space?

Topic 11.5 Objective 2: Solve Problems Involving Angles

What are **complementary angles**?

What are **supplementary angles**?

Example 5:
Study the solution for Example 5 on page 11.5-9 and record the answer below.

Find the measure of each complementary angle in the following figure.
Example 6:
Complete Example 6 on page 11.5-11 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Find the measure of each supplementary angle in the following figure.

\[
\begin{align*}
(x + 15)^\circ & \quad (7x - 19)^\circ
\end{align*}
\]

What is the sum of the measures of the three angles of a triangle?

Example 7:
Complete Example 7 on page 11.5-13 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Triangle Park in Lexington, KY, has a roughly triangular shape such that the smallest angle measures 10 degrees less than the middle-sized angle. The largest angle measures 30 degrees less than twice the middle-sized angle. Find the measures of all three angles.

Topic 11.5 Objective 3: Solve Problems Involving Uniform Motion

What are uniform motion problems?
Example 8:
Study the solution for Example 8 on page 11.5-14 and record the answer below. For some problems, creating a table may help organize the information.

In January 2010, the U.S. government announced plans for the development of high-speed rail projects. A medium-fast passenger train leaves a station traveling 100 mph. Two hours later, a high-speed passenger train leaves the same station traveling 180 mph on a different track. How long will it take the high-speed train to be the same distance from the station as the medium-fast passenger train?
The information has been inserted into the following table, where \(m \) represents the time of the medium-fast train. Once the rate and time columns are filled in, the distance column can be found by multiplying rate times time.

<table>
<thead>
<tr>
<th>Rate</th>
<th>Time</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>medium-fast</td>
<td>(m)</td>
<td>100(m)</td>
</tr>
<tr>
<td>high-speed</td>
<td>(m - 2)</td>
<td>180((m - 2))</td>
</tr>
</tbody>
</table>

Since the both trains travel the same distance, you can derive an equation by setting the two distances equal to each other and solving for the unknowns.
\[
100m = 180(m - 2)
\]

Example 9:
Complete Example 9 on page 11.5-16 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Brennan provides in-home healthcare in a rural county and gets reimbursed for mileage. On one particular day he spent 4 hours driving to visit patients. His average speed is 50 mph on the highway but then slows to 30 mph when driving through towns. If he traveled five times as far on the highway as through towns, how far did he travel that day?
Try completing the table to help you organize the information and derive an equation.

<table>
<thead>
<tr>
<th>Rate</th>
<th>Time</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Topic 11.6 Guided Notebook
Topic 11.6 Percent and Mixture Problem Solving

Topic 11.6 Objective 1: Solve Problems by Using a Percent Equation

What operation does the word “of” indicate?

What is the **General Equation for Percents**?

How is each of the following identified in percent problems?

- **Base**
- **Percent**
- **Amount**

Example 1: Study the solution for Example 1 part a on page 11.6-4 and record the answer below. Complete parts b and c on your own and check your answers by clicking on the link. Use equations to solve each percent problem.

a. 32 is 40% of what number?

b. 145% of 78 is what number?

c. 8.2 is what percent of 12.5?

Example 2:
Study the solution for Example 2 on page 11.6-5 and record the answer below. 6% of a 128 fluid-ounce bottle of bleach is sodium hypochlorite. How many fluid ounces of sodium hypochlorite are in the bottle?
Topic 11.6 Objective 2: Solve Percent Problems Involving Discounts, Markups, and Sales Tax

This section introduces a number of formulas, but you really need to only know one. The following formula represents the fact that the original amount is being increased or decreased by a certain percent of the original to give the final result.

\[
\text{Original amount } \pm \text{ percent } \cdot \text{original amount} = \text{the final result}
\]

You would add if it is an increase, such as a markup or sales tax. You subtract if it is a decrease, such as discount. *Any part of the equation can be the unknown*, you just need to translate what part is the unknown and which parts you can fill in with the given information.

Example 3:
The single formula is used below to solve Example 3.
A furniture store is going out of business and cuts all prices by 55%. What is the sale price of a sofa with an original price of $1199?

You are given that the original price is $1199 and the percent 55% is the discount so we will use the equation utilizing subtraction. Let \(x \) represent sale price since that is what we are looking for and the final result.

\[
\begin{align*}
1199 & \quad - \quad 0.55 \quad (1199) \quad = \quad x \\
1199 & \quad - \quad 659.45 \quad = \quad x \\
539.55 & \quad = \quad x
\end{align*}
\]

The sale price of the sofa is $539.55.

Example 4:
Complete Example 4 on page 11.6-8 on your own. Use the formula:

\[
\text{Original amount } \pm \text{ percent } \cdot \text{original amount} = \text{the final result}
\]

A college book store sells all textbooks at a 30% markup over its cost. If the price marked on a biology textbook is $124.28, what was the cost of the book to the store? Round to the nearest cent.
Example 5: Complete Example 5 on page 11.6-9 using the formula:

\[\text{Original amount } \pm \text{ percent } \cdot \text{original amount} = \text{the final result} \]

Charlotte bought a pair of jeans priced at $51.99. When sales tax was added, she paid an overall price of $55.37. What was the tax rate? Round to the nearest tenth of a percent.

Topics 11.6 Objective 3: Solve Percent of Change Problems

Example 6: Complete Example 6 on page 11.6-11 using the formula:

\[\text{Original amount } \pm \text{ percent } \cdot \text{original amount} = \text{the final result} \]

Last year, 16,528 students attended City Community College. This year enrollment increased by 3.2%. How many students attend City Community College this year? Round to the nearest whole student.

Example 7:
Complete Example 7 on page 11.6-13 on your own. Use the formula:

\[\text{Original amount } \pm \text{ percent } \cdot \text{original amount} = \text{the final result} \]

Prior to reorganization in 2010, General Motors (GM) had 91,000 U.S. employees. After the reorganization, GM had 68,500 U.S. employees. By what percent did the number of U.S. employees decrease? (*Source:* General Motors)
Topic 11.6 Objective 4: Solve Mixture Problems

As mentioned earlier, tables or diagrams are helpful in organizing information. The following example is done using a table.

Example 8:
An organic cranberry-grape juice is 40% grape juice, while an organic fruit cocktail juice is 10% grape juice. If 8 ounces of the cranberry-grape juice are mixed with the 22 ounces of the fruit cocktail juice, what is the mixed juice’s concentration of grape juice?

<table>
<thead>
<tr>
<th></th>
<th>cranberry-grape juice</th>
<th>fruit cocktail</th>
<th>final mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of grape juice</td>
<td>0.40</td>
<td>0.10</td>
<td>x</td>
</tr>
<tr>
<td>number of ounces</td>
<td>8</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>ounces of grape juice</td>
<td>0.4(8) + 0.10(22) =</td>
<td>x(30)</td>
<td></td>
</tr>
</tbody>
</table>

The table indicates that x represents the percent of grape juice in the final mixture.

Solve: $0.4(8) + 0.10(22) = x(30)$ for x. View the answer.

Example 9:
Solve the following problems by first organizing the information in the given table. How many milliliters of a 25% alcohol solution must be mixed with 10 mL of a 60% alcohol solution to result in a mixture that is 30% alcohol?

<table>
<thead>
<tr>
<th></th>
<th>first mixture</th>
<th>second mixture</th>
<th>final mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of alcohol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mL of alcohol</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Topic 11.7 Guided Notebook

Topic 11.7 Linear Inequalities in One Variable

Topic 11.7 Objective 1: Write the Solution Set of an Inequality in Set-Builder Notation

We use _______________ symbols in inequalities to show that ________________

Write down an example of set-builder notation and explain each part.

Example 1: Study the solutions for Example 1 and record the answer below.

a. \(x < 6 \)
 b. \(y \geq -3 \)
 c. \(2 < m \leq 9 \)

Topic 11.7 Objective 2: Graph the Solution Set of an Inequality on a Number Line

In showing solutions on a number line, when is an open circle (○) used and when is a closed circle (●) used?

Example 2: Study the solutions for Example 2 parts a and b on page 11.7-5 and record the answer below. Complete parts c–f on your own and check your answers.

Graph each solution set on a number line.

a. \(\{ x \mid x \leq 0 \} \)
 b. \(\{ x \mid -2 \leq x < 4 \} \)
 c. \(\{ x \mid x > -1 \} \)

 d. \(\{ x \mid 3 < x < 7 \} \)
 e. \(\{ x \mid -1 \leq x \leq 5 \} \)
 f. \(\{ x \mid x \text{ is any real number} \} \)

Topics 11.7 Objective 3: Use Interval Notation to Express the Solution Set of an Inequality

What is the lower bound and upper bound of an interval?

When are parentheses used for the endpoints? When are square brackets used for the endpoints?
Example 3: Study the solutions for Example 3 parts a and b on page 11.7-9. Complete parts c–f on your own and check your answers by clicking on the link.

Write each solution set using interval notation.

c. \(x \) is less than 4
d. \(x \) is between -1 and 5, inclusive

e. \(\{ x \mid x \text{ is any real number} \} \)
f. \(\{ x \mid 8 > x \geq -3 \} \)

Topic 11.7 Objective 4: Solve Linear Inequalities in One Variable

What is the definition of a Linear Inequality in One Variable?

Record the Addition Property of Inequality.

Example 4:
Record the solution for Example 4 part a on page 11.7-11. Complete part b on your own and check your answer by clicking on the link.

Solve each inequality using the addition property of inequality. Write the solution set in interval notation and graph it on a number line.

a. \(x + 5 > 4 \)
b. \(y - 3 \leq 1 \)

What is the Multiplication Property of Inequality?

Write the Guidelines for Solving Linear Inequalities in One Variable

1.

2.

3.

4.

5.

6.
Example 8: Complete Example 8 on page 11.7-19 on your own. Check your answer by clicking on the link.
Solve the inequality $4 + 2(3 - x) > 3(2x + 7) + 5$. Write the solution set in set-builder notation, and graph it on a number line.

Example 9: Complete Example 9 on page 11.7-19 on your own. Check your answer by clicking on the link.
Solve the inequality $\frac{n}{3} - 4 > -\frac{n}{6} + 1$. Write the solution set in interval notation.

What are a contradiction and an identity?

Example 10: Record the steps and answer for part a. Complete part b on your own. If your answer is incorrect, watch the video to find your error.
Solve the following inequalities. Write each solution set in interval notation.
a. $10 - 2(x + 1) > -5x + 3(x + 8)$
b. $2(5 - x) - 2 < 3(x + 3) - 5x$

Topic 11.7 Objective 5: Solve Three-Part Inequalities
Example 11: Record the steps and answer Example 11.
$4 \leq 3x - 2 < 7$
Example 12: Solve the inequality $-1 < \frac{2x + 1}{3} < 1$ and check your answer.

Topic 11.7 Objective 6: Use Linear Inequalities to Solve Application Problems.

What are the steps in the **Strategy for Solving Application Problems Involving Linear Inequalities**?

1.

2.

3.

4.

5.

6.

Example 14:

Study the solution for Example 13 and try to complete Example 14 on your own.

Lesley is planning a birthday party for her son at Incredible Pizza. The party will cost $43 plus $15 for each guest. If she does not want to spend more than $300, what is the largest number guests that can attend the party.
Metacognitive Skills: MDEV 090 Exam 2

Metacognitive skills refer to the ability to judge how well you have learned something and to effectively direct your own learning and studying. This is a self-evaluation tool designed to help you focus your studying and to improve your metacognitive skills with regards to this math class.

Use the following scale to complete the ‘Before Studying’ column and then the ‘After Studying’ column once you study.

- 5 I am confident I can do any problems in this category correctly.
- 4 I am confident I can do most of the problems in this category correctly.
- 3 I understand how to do the problems in this category, but I still make a lot of mistakes.
- 2 I feel unsure about how to do these problems.
- 1 I know I don’t understand how to do these problems.

<table>
<thead>
<tr>
<th>Topic or Skill</th>
<th>Before Studying</th>
<th>After Studying</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1: Identify Linear Equations in One Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1: Determine if a Given Value is a Solution to an Equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1: Solve Linear Equations using the Addition and/or Multiplication Properties of Equality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2: Solve Linear Equations Containing Non-Simplified Expressions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2: Solve Linear Equations Containing Fractions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2: Solve Linear Equations Containing Decimals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2: Identify Contradictions and Identities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2: Use Linear Equations to Solve Applications Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3: Solve Problems Involving Related Quantities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3: Solve Problems Involving Consecutive Integers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3: Solve Problems Involving Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.4: Evaluate a Formula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.4: Find the Value of a Non-isolated Variable in a Formula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.4: Solve a Formula for a Given Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.4 and 11.5: Use Geometric Formulas to Solve Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5: Solve Problems involving Angles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5: Solve Problems Involving Uniform Motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.6 Solve Problems by Using a Percent Equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.6 Solve Percent Problems Involving Discounts, Markups and Sales Tax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.6 Solve Percent of Change Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.6 Solve Mixture Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7 Write the Solution Set of an Inequality in Set-Builder Notation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7 Graph the Solution Set of an Inequality on a Number Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7 Use Interval Notation to Express the Solution Set of an Inequality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7 Solve Linear Inequalities in One Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7 Solve Three-Part Inequalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7 Use Linear Inequalities to Solve Application Problems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2015 MSU-Moorhead MLC
Refer to this assessment after your test and circle any of the ratings you would change – this identifies the "disconnects" between what you thought you knew well and what you actually knew well.
Topic 11.8 Guided Notebook

Topic 11.8 Compound Inequalities; Absolute Value Equations and Inequalities

Topic 11.8 Objective 1: Find the Union and Intersection of Two Sets

Write down the definition of **Intersection**. What symbol is used?

Example 2:
Complete Example 2 on page 11.8-4 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Let \(A = \{ x | x > -2 \} \) and \(B = \{ x | x \leq 5 \} \). Find \(A \cap B \), the intersection of the two sets.

Write down the definition of **Union**. What symbol is used?

Example 4:
Complete Example 4 on page 11.8-6 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Let \(A = \{ x | x < -2 \} \) and \(B = \{ x | x \geq 5 \} \). Find \(A \cup B \), the union of the two sets.

Example 5:
Study the solutions for Example 5 parts a and b on page 11.8-7.
Topic 11.8

Topic 11.8 Objective 2: Solve Compound Linear Inequalities in One Variable

Write down the *Guidelines for Solving Compound Linear Inequalities.*

1.

2.

3.

Example 7:
Complete Example 7 on page 11.8-11 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Solve \(9 - 4x < -7 \) or \(5x + 6 < 3(x + 2) \). Graph the solution set and then write it in interval notation.

Explain why the solution to \(2x - 3 \leq -1 \) and \(x - 7 \geq -3 \) is a null set.

Explain why the solution to \(10x + 7 > 2 \) or \(3x - 6 \leq 9 \) is the set of real numbers.

Topic 11.8 Objective 3: Solve Absolute Value Equations

Write down the *Absolute Value Equation Property.*

Example 9:
Complete Example 9 on page 11.8-16 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Solve. \(|l - 3x| = 4 \)
Read and summarize the CAUTION statement on 11.8-17.

Write down the **Strategy for Solving Absolute Value Equations**.

1.

2.

3.

4.

Example 13:
Complete Example 13 on page 11.8-20 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Solve. \(-3|2-m| + 8 = 2\)

Note: We will not be covering Objective 4 in this course.
Topic 12.1 Guided Notebook
Topic 12.1 The Rectangular Coordinate System

Topic 12.1 Objective 1: Read Line Graphs

Why are graphs often used?

What are line graphs?

Example 1:
Study the solution for Example 1 parts a and b on page 12.1-4 and record the answers below. Complete parts c–e on your own and check your answers by clicking on the link.

The following line graph shows the average daily temperature in St. Louis, MO for each month.

![Average Daily Temperatures in St. Louis, MO graph](image)

a. What is the average daily temperature in February?

b. What is the average daily temperature in November?

c. In what month is the average daily temperature 70º F?

d. Which month has the highest average daily temperature? What is the average daily temperature for that month?

e. In what months are the average daily temperatures above 65º F?
Topic 12.1 Objective 2: Identify Points in the Rectangular Coordinate System

What does the **Cartesian coordinate system** consist of?

Write down the definition of each of the following terms.

- **perpendicular**

- **x-axis**

- **y-axis**

- **origin**

- **Cartesian plane**

- **quadrants**

Draw a picture labeling each of the following: x-axis, y-axis, the four quadrants, origin.
Write down the definition of each of the following terms.

point

ordered pair

x-coordinate

y-coordinate

abscissa

ordinate

Example 2:
Complete Example 2 on page 12.1-8 on your own. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Use an ordered pair to identify each point on the coordinate plane shown. State the quadrant or axis where each point lies.

Point A
Point B
Point C
Point D
Point E
Point F
Point G

Read and summarize the CAUTION statement on page 12.1-9.
Topic 12.1

Topic 12.1 Objective 3: Plot Ordered Pairs in the Rectangular Coordinate System.

We **plot**, or __________, an ordered pair by placing a __________ at its ______________ on the coordinate plane.

Topic 12.1 Objective 4: Create Scatter Plots

What can ordered pairs be used to study? Give an example different from the book.

What are **paired data**?

What is a **scatter plot**?

Example 4:
Study the solution for Example 4 on page 12.1-11 and record the answers below.

The table below shows the number of U.S. ethanol plants operating in the month of January for the years 2000–2010. List ordered pairs in the form (year, number of plants). Create a scatter plot of the paired data. Do the paired data show a trend? If so, what is the trend?

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>54</td>
</tr>
<tr>
<td>2001</td>
<td>56</td>
</tr>
<tr>
<td>2002</td>
<td>61</td>
</tr>
<tr>
<td>2003</td>
<td>68</td>
</tr>
<tr>
<td>2004</td>
<td>72</td>
</tr>
<tr>
<td>2005</td>
<td>81</td>
</tr>
<tr>
<td>2006</td>
<td>95</td>
</tr>
<tr>
<td>2007</td>
<td>110</td>
</tr>
<tr>
<td>2008</td>
<td>139</td>
</tr>
<tr>
<td>2009</td>
<td>170</td>
</tr>
<tr>
<td>2010</td>
<td>189</td>
</tr>
</tbody>
</table>

Source: Renewable Fuels Association
Topic 12.2 Guided Notebook
Topic 12.2 Graphing Linear Equations in Two Variables

Topic 12.2 Objective 1: Determine If an Ordered Pair Is a Solution to an Equation

What is a **Solution to an Equation in Two Variables**?

Example 1: Study the solutions to Example 1 parts a and b on page 12.2-4 and record the answers below. Complete parts c and d on your own and check your answers by clicking on the link.
Determine if each ordered pair is a solution to the equation \(x + 2y = 8 \)

a. \((-2,5)\)
b. \((2,6)\)
c. \((-11, \frac{3}{2})\)
d. \((0, 4)\)

Topic 12.2 Objective 2: Determine the Unknown Coordinate of an Ordered Pair Solution

What is an **ordered pair solution**?

Example 2:
Study the solution for Example 2 part a on page 12.2-6 and record the answer below. Complete parts b and c on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.
Find the unknown coordinate so that each ordered pair satisfies \(2x - 3y = 15 \).

a. \((6, ?)\)
b. \((?, 7)\)
c. \((-\frac{5}{2}, ?)\)
Topic 12.2 Objective 3: Graph Linear Equation by Plotting Points

What is the **graph of an equation in two variables**?

To make such a graph:

1. We can __________ several points that ______________ the __________________.
2. Then we __________ the points with a __________ or ________________.

Write down a **Linear Equation in Two Variables (Standard Form)**.

How many points are required to determine a line?

Example 5:
Complete Example 5 on page 12.2-16 parts a and b on your own. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Graph by plotting points.

a. \(y = 2x \)

 b. \(3x + 2y = 5 \)

Topic 12.2 Objective 4: Find \(x \)- and \(y \)-Intercepts

What are **intercepts**?

What is a **\(y \)-intercept**? What is the corresponding ordered pair?

What is an **\(x \)-intercept**? What is the corresponding ordered pair?
Example 6: Study the solution for Example 6 on page 12.2-18 and record the answer below.

Find the intercepts of the graph shown. What are the x-intercepts? What are the y-intercepts?

Record the method for Finding x- and y-Intercepts of a Graph Given an Equation.

Example 7: Study the solution for Example 7 part a on page 12.2-20 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Find the x- and y-intercepts for the graph of each equation.

a. $2x + y = 4$

b. $4x = 3y + 8$

Topic 12.2 Objective 5: Graph Linear Equations Using Intercepts

Study the solution for Example 8 on page 12.2-21 and record the answer below.

Graph $3x - 2y = 6$ using intercepts.
Example 9:
Complete Example 9 on page 12.2-23 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Graph $2x = 5y$ using intercepts.

Topic 12.2 Objective 6: Use Linear Equations to Model Data

Example 10:
Complete Example 10 on page 12.2-24 on your own. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

The number of U.S. drive-in theaters can be modeled by the linear equation $y = -7.5x + 435$, where x is the number of years after 2000. *(Source: United Drive-In Theater Owners Association, 2009)*

a. Find the missing coordinate for the ordered pair solution (?, 390).

b. Interpret the point from part (b).

c. Find and interpret the y-intercept.

d. What does the x-intercept represent in this problem?

e. Sketch the graph of the equation for the year 2000 and beyond.

Topic 12.2 Objective 7: Graph Horizontal and Vertical Lines

Describe the graph of the equation $x = a$?

Describe the graph of the equation $y = b$?
Topic 12.3 Guided Notebook

Topic 12.3 Slope

Topic 12.3 Objective 1: Find the Slope of a Line Given Two Points

What is a key feature of a line?

How is the slant or steepness of a line measured?

Write down the definition of Slope.

What is the Slope Formula? Be sure to include the diagram.

Example 2:
Study the solution for Example 2 on page 12.3-8 and record the answer below.

Find the slope of the line containing the points \((-2, 4)\) and \((1, -3)\).

Summarize the information on Positive versus Negative Slope from page 12.3-10.

Example 3:
Study the solution for Example 3 part a on page 12.3-10 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Find the slope of the line containing the given points. Simplify if possible.

a. \((-6, -1)\) and \((4, 5)\)

b. \((1, 5)\) and \((3, -1)\)
Topic 12.3

Topic 12.3 Objective 2: Find the Slopes of Horizontal and Vertical Lines

Example 4: Study the solutions for Example 4 parts a and b on page 12.3-11 and record the answers below. Watch the video for detailed solutions.

Find the slope of the line containing the given points. Simplify if possible.

a. \((-3, 2)\) and \((1, 2)\)
b. \((4, 2)\) and \((4, -5)\)

Summarize the information on **Slopes of Horizontal and Vertical Lines** from page 12.3-13.

Why shouldn’t we avoid using the term “no slope”?

Sketch Figure 18 on page 12.3-13, which summarizes the relationship between the slope and the graph of a linear equation.

Topic 12.3 Objective 3: Graph a Line Using the Slope and a Point

Example 5: Study the solution for Example 5 on page 12.3-14 and sketch the graph below.

Graph the line that has slope \(m = \frac{3}{2}\) and passes through the point \((1, -2)\).

Example 6: Complete Example 6 on page 12.3-15 on your own.

Graph the line that has slope \(m = -3\) and passes through the point \((2, -1)\).
Topic 12.3 Objective 4: Find and Use the Slopes of Parallel and Perpendicular Lines

What are *parallel lines*?

Write down the information on **Parallel Lines** found on page 12.3-17.

What are *perpendicular lines*?

Write down the information on **Perpendicular Lines** found on page 12.3-19.

Example 8:
Refer to Example 7 to help you complete Example 8 on page 12.3-21 on your own. Check your answer by clicking on the link.

a. Graph a line l_2 that is parallel to l_1 and passes through the point $(3, -2)$

b. Graph a line l_3 that is perpendicular to l_1 and passes through the point $(3, -2)$

Topic 12.3 Objective 5: Use Slope in Applications

What is *grade*? Give an example.

What is the slope of a roof called?
Example 9: Study the solution for Example 9 on page 12.3-22 and record the answer below.

A standard wheelchair ramp should rise no more than 1 foot vertically for every 12 feet horizontally. Find the grade of this ramp. Round to the nearest tenth of a percent. (*Source:* Americans with Disabilities Act Accessibility Guidelines (ADAAG))

What is **average rate of change**? Why is it called this in many applications?

Example 10: Study the solution for Example 10 on page 12.3-24 and record the answer below. Watch the video for a detailed solution.

The average tuition and fees for U.S. public two-year colleges were $2130 in 1999. The average tuition and fees were $2540 in 2009. Find and interpret the slope of the line connecting the points (1999, 2130) and (2009, 2540). (*Source:* College Board, *Trends in College Pricing 2009*)
Topic 12.4 Guided Notebook
Topic 12.4 Equations of Lines

Topic 12.4 Objective 1: Determine the Slope and y-Intercept from a Linear Equation

To determine the slope and y-intercept directly from an equation what must be done first?

What is **Slope-Intercept Form**?

Example 2:
Complete Example 2 parts a and b on page 12.4-6 on your own. Check your answers by clicking on the link.

Find the slope and y-intercept of the given line.

a. $4x - 10y = 0$

b. $y = 4$

Topic 12.4 Objective 2: Use the Slope-Intercept Form to Graph a Linear Equation

Study the animation on page 12.4-7.

Example 4: Complete Example 4 on page 12.4-9 on your own. Check your answer by clicking on the link.

Graph the equation $2x + 3y = 9$ using the slope and y-intercept.
Topic 12.4 Objective 3: Write the Equation of a Line Given Its Slope and y-Intercept

If the slope and y-intercept is given, how do you write the equation of the line?

Example 5: Study the solution for Example 5 on page 12.4-10 and record the answers below.

Write an equation of the line with the given slope and y-intercept.

a. slope $-4; \ y$-intercept 3

b. slope $\frac{2}{5}; \ y$-intercept -7

Topic 12.4 Objective 4: Write the Equation of a Line Given Its Slope and a Point on the Line

What is the **Point-Slope Form**?

Example 7: Complete Example 7 on page 12.4-13 on your own and check your answer.

Use the point-slope form to determine the equation of the line that has slope $-\frac{3}{4}$ and passes through the point $(2,-5)$. Write the equation in slope-intercept form.

Example 8:
Study the solution for Example 8 on page 12.4-15 and record the answers below.

Write the equation of a line that passes through the point $(-3,2)$ and has the given slope.

a. $m = 0$
b. undefined slope

Topic 12.4 Objective 5: Write the Equation of a Line Given Two Points

Example 9: Complete Example 9 on page 12.4-16 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Write the equation of the line passing through the points $(-4,1)$ and $(2,4)$. Write your answer in slope-intercept form.
Complete Table 1 from page 12.4-17

<table>
<thead>
<tr>
<th>Slope</th>
<th>Average rate of change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point-Slope Form</th>
<th>Slope is _____ and _______ is a point on the line</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = mx + b</td>
<td></td>
</tr>
<tr>
<td>Ax + By = C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizontal Line</th>
<th>Slope is _______, and y-intercept is ______</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = a</td>
<td></td>
</tr>
</tbody>
</table>

Topic 12.4 Objective 6: Determine the Relationship Between Two Lines

Parallel lines have the ____________ slope but ______________ y-intercepts.
Perpendicular lines have ________________________________ slopes.
Coinciding Lines have the __________ slope and the ___________ y-intercept.
Two lines with different slopes will ____________________.

Example 10: Study the solution for Example 10 part a on page 12.4-19 and record the answer below. Complete parts b–d on your own and check your answers by clicking on the link.
For each pair of lines, determine if the lines are parallel, perpendicular, coinciding, or only intersecting.

a. \(3y = -2y + 7 \)
 \(3x - 2y = 8 \)
b. \(y = -3x + 1 \)
 \(6x + 2y = 2 \)
c. \(4x - 5y = 15 \)
 \(y = \frac{4}{5}x + 1 \)
 \(x + 2y = -12 \)
d. \(3x - 4y = 2 \)
Topic 12.4 Objective 7: Write the Equation of a Line Parallel or Perpendicular to a Given Line

Example 11: Study the solution for Example 11 part a on page 12.4-20 and record the answer below. Complete part b on your own and check your answer by clicking the link. Write the equation of the line that passes through the point (6,−5) and is

a. perpendicular to $6x − 2y = −1$
b. parallel to $y = −2x + 4$

Topic 12.4 Objective 8: Use Linear Equations to Solve Applications

Example 12: Complete Example 12 parts a and b on page 12.4-23 on your own. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

If attendance at professional football games is 17 million in a given year then the corresponding attendance at college football games is 31 million. Increasing attendance at professional football games to 25 million increases attendance at college football games to 55 million. (*Source:* Statistical Abstract, 2010)

a. Assume that the relationship between professional football attendance (in millions) and college football attendance (in millions) is linear. Find the equation of the line that describes this relationship. Write your answer in slope-intercept form.

b. Use your equation from part (a) to estimate the attendance at college football games if the attendance at professional football games is 21 million
Topic 12.5 Guided Notebook
Topic 12.5 Linear Inequalities in Two Variables

Topic 12.5 Objective 1: Determine If an Ordered Pair Is a Solution to a Linear Inequality in Two Variables

What is the solution set for a linear inequality in one variable?

Where the solution set of a linear inequality in one variable is typically graphed?

What is the definition of a **Linear Inequality in Two Variables**?

When is an ordered pair a **solution to a linear inequality in two variables**?

Example 1: Study the solution to Example 1 part a on page 12.5-4 and record the answer below. Complete parts b and c on your own and check your answers by clicking on the link.

Determine if the given ordered pair is a solution to the inequality $2x - 3y < 6$.

a. $(-1,-2)$
b. $(4,-1)$
c. $(6,2)$
Topic 12.5 Objective 2: Graph a Linear Inequality in Two Variables

To find solutions to $x + y < 2$ or $x + y > 2$ what equation do we start with? Graph that equation. To get more details, click on the link on page 12.5-5.

What is a **half-plane**?

Does the upper half-plane represent the solutions to $x + y < 2$ or $x + y > 2$. Why?

Does the lower half-plane represent the solutions to $x + y < 2$ or $x + y > 2$. Why?

What is a **boundary line**?

What are the **Steps for Graphing Linear Inequalities in Two Variables**?

1.

2.

3.

Why would use a dashed line to graph the border versus a solid line?
Example 2: Study the solution for Example 2 part a on page 12.5-7 and record the answer below. Complete parts b and c on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Graph each inequality.

a. $3x - 4y \leq 8$

b. $y > 3x$

c. $y < -2$

Why should your test point NOT be on the border line?

Topic 12.5 Objective 3: Solve Applications Involving Linear Inequalities in Two Variables

Example 3: Study the solutions for Example 3 parts a – c on page 12.5-11. Record the answers below.

A piggy bank contains only nickels and dimes with a total value of less than $9. Let $n =$ the number of nickels and $d =$ the number of dimes.

a. Write an inequality describing the possible numbers of coins in the bank.
b. Graph the inequality. Because \(n \) and \(d \) must be whole numbers, restrict the graph to Quadrant I.

c. Could the piggy bank contain 90 nickels and 60 dimes?

Why do the number of nickels and dimes need to be whole numbers?
Topic 13.1 Guided Notebook
Topic 13.1 Solving Systems of Linear Equations by Graphing

Topic 13.1 Objective 1: Determine If an Ordered Pair Is a Solution to a System of Linear Equations in Two Variables

What is the definition of a **System of Linear Equations in Two Variables**? Give two examples.

What is the definition of the **Solution to a System of Linear Equations in Two Variables**?

Example 1:
Complete Example 1 parts a and b on page 13.1-5 on your own. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Determine if each ordered pair is a solution to the following system:

\[
\begin{cases}
2x + 3y = 12 \\
x + 2y = 7
\end{cases}
\]

a. \((-3, 6)\)
 b. \((3, 2)\)
Topic 13.1

Topic 13.1 Objective 2: Determine the Number of Solutions to a System Without Graphing

What are the three possible outcomes when two linear equations are graphed? Include a sketch of each.

Write down the definitions for the following terms.

- **Consistent**
- **Inconsistent**
- **Dependent**
- **Independent**

Describe the slopes and y-intercepts of two lines with the following number of solutions.

- **One solution**
- **No solutions**
- **Infinite number of solutions**
Example 2: Study the solution for Example 2 part a on page 13.1-8 and record the answer below. Complete parts b and c on your own and check your answers by clicking on the link.

Determine the number of solutions to each system without graphing.

a. \[\begin{align*}
 y &= 3x - 4 \\
 6x + 3y &= 8
\end{align*} \]

b. \[\begin{align*}
 2x - 4y &= \frac{8}{3} \\
 3x - 6y &= 4
\end{align*} \]

c. \[\begin{align*}
 5x - 2y &= 3 \\
 \frac{5}{2}x + y &= 7
\end{align*} \]

Topics 13.1 Objective 3: Solve Systems of Linear Equations by Graphing

What are the three methods for solving systems of linear equations in two variables?

There is no need to solve which systems by graphing? Why?

What are the steps for **Solving Systems of Linear Equations in Two Variables by Graphing**?

1.

2.

3.
Example 3: Study the solution for Example 3 on page 13.1-12 and record the answer below.

Solve the following system by graphing:

\[
\begin{align*}
 y &= 2x + 1 \\
 y &= -x + 4
\end{align*}
\]

Example 4: Study the solution for Example 4 on page 13.1-14 and record the answer below.

Solve the following system by graphing:

\[
\begin{align*}
 3x + y &= -2 \\
 x + y &= 2
\end{align*}
\]
Topic 13.2 Guided Notebook
Topic 13.2 Solving Systems of Linear Equations by Substitution

Topic 13.2 Objective 1: Solve Systems of Linear Equations by Substitution

What are the steps for Solving Systems of Linear Equations in Two Variables by Substitution?

1.
2.
3.
4.

Example 1:
Study the solution for Example 1 on page 13.2-5 and record the answer below.

Use the substitution method to solve the following system:

\[
\begin{align*}
4x + 2y &= 10 \\
y &= 3x - 10
\end{align*}
\]
Example 3:
Complete Example 3 on page 13.2-8 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Solve the following system:
\[
\begin{align*}
4x + 3y &= 7 \\
x + 9y &= -1
\end{align*}
\]

Example 4: Complete Example 4 on page 13.2-9 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Use the substitution method to solve the following system:
\[
\begin{align*}
6x - 3y &= -33 \\
2x + 4y &= 4
\end{align*}
\]

Topic 13.2 Objective 2: Solve Special Systems by Substitution

What are the three possible outcomes when two linear equations are graphed? Include a sketch of each.
Describe the slopes, \(y \)-intercepts, and number of solutions of two lines described below. Also state if they are consistent, inconsistent, dependent, and/or independent. Show an Example for each.

Intersecting Lines

Parallel Lines

Coinciding Lines

When solving algebraically, how are the following situations recognized?

1. The system is independent and consistent.

2. The system is independent and inconsistent.

3. The system is dependent and consistent.

Example 5:
Study the solution for Example 5 on page 13.2-11 and record the answer below.

Use the substitution method to solve the following system:

\[
\begin{align*}
2x + 10y &= 8 \\
x + 5y &= 4
\end{align*}
\]
Read and summarize the CAUTION statement on page 13.2-15.

Example 6: Study the solution for Example 6 on page 13.2-15 and record the answer below.

Use the substitution method to solve the following system:

\[
\begin{align*}
3x - y &= -1 \\
-12x + 4y &= 8
\end{align*}
\]

Example 7:

Complete Example 7 parts a and b on page 13.2-17 on your own. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Use the substitution method to solve the following system:

a. \[
\begin{align*}
\frac{1}{4}x + y &= 5 \\
x + 4y &= 8
\end{align*}
\]

b. \[
\begin{align*}
-2.4x + 1.5y &= -3 \\
0.8x - 0.5y &= 1
\end{align*}
\]
Metacognitive Skills: MDEV 090 Exam 3

Use the following scale to complete the ‘Before Studying’ column and then the ‘After Studying’ column once you study.

5	I am confident I can do any problems in this category correctly.
4	I am confident I can do most of the problems in this category correctly.
3	I understand how to do the problems in this category, but I still make a lot of mistakes.
2	I feel unsure about how to do these problems.
1	I know I don’t understand how to do these problems.

<table>
<thead>
<tr>
<th>Topic or Skill</th>
<th>Before Studying</th>
<th>After Studying</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8 Find the Union and Intersection of Two Sets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.8 Solve Compound Linear Inequalities in One Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.8 Solve Absolute Value Equations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1 Read Line Graphs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1 Identify Points in the Rectangular Coordinate System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1 Plot Ordered Pairs in the Rectangular Coordinate System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1 Create Scatter Plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2 Determine If an Ordered Pair is a Solution to an Equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2 Determine the Unknown Coordinate of an Ordered Pair Solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2 Graph Linear Equations by Plotting Points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2 Find x- and y- intercepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2 Graph Linear Equations Using Intercepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2 Use Linear Equations to Model Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2 Graph Horizontal and Vertical Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.3 Find the Slope of a Line Given Two Points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.3 Find the Slopes of Horizontal and Vertical Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.3 Graph a Line Using the Slope and a Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.3 Find and Use the Slopes of Parallel and Perpendicular Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.3 Use Slope in Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4 Determine the Slope and y-intercept from a Linear Equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4 Use the Slope-Intercept Form to Graph a Linear Equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4 Write the Equation of a Line Given Its Slope and y-intercept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4 Write the Equation of a Line Given Its Slope and Point on the Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4 Write the Equation of a Line Given Two Points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4 Determine the Relationship Between Two Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4 Write the Equation of a Line Parallel or Perpendicular to a Given Line</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2015 MSU-Moorhead
Refer to this assessment after your test and circle any of the ratings you would change – this identifies the “disconnects” between what you thought you knew well and what you actually knew well.
Topic 13.3 Guided Notebook

Topic 13.3 Solving Systems of Linear Equations by Elimination

Topic 13.3 Objective 1: Solve Systems of Linear Equations by Elimination

Summarize the elimination method as found on page 13.3-3. Include the Logic for the Elimination Method.

What is another name for the elimination method?

Example 1:
Study the solution for Example 1 on page 13.3-3 and record the answer below.

Solve the following system.

\[
\begin{align*}
2x + y &= 4 \\
-3x - y &= -6
\end{align*}
\]

To eliminate a variable, the coefficients of the variable in the two equations must be _______________. How can we make this happen?
Example 2: Study the solution for Example 2 on page 13.3-6 record the answer below.

Solve the following system.

\[
\begin{align*}
4x + 2y &= 5 \\
x - y &= -4
\end{align*}
\]

Record the steps for Solving Systems of Linear Equations in Two Variables by Elimination.

1.

2.

3.

4.

5.

Example 3: Study the solution for Example 3 on page 13.3-9 record the answer below.
Use the elimination method to solve the following system. \[
\begin{align*}
3x + 4y &= 7 \\
x - 3y &= -9
\end{align*}
\]

Example 5: Complete Example 5 on page 13.3-12 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Use the elimination method to solve the following system. \[
\begin{align*}
5x - 6y &= 20 \\
4x + 9y &= 16
\end{align*}
\]
Example 6: Complete Example 6 on page 13.3-13 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Use the elimination method to solve the following system.
\[
\begin{align*}
3x + \frac{3}{5}y &= 4 \\
\frac{1}{2}x + 3y &= -\frac{9}{5}
\end{align*}
\]

Topic 13.3 Objective 2: Solve Special Systems by Elimination

When solving by elimination, an \underline{________________________} system will lead to a \underline{________________________} and a \underline{________________________} system will lead to an \underline{________________________}.

Example 7: Study the solution for Example 7 part a on page 13.3-14 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Use the elimination method to solve each system.

a. \[
\begin{align*}
3x + y &= 6 \\
6x + 2y &= 4
\end{align*}
\]
b. \[
\begin{align*}
2x - 8y &= 6 \\
3x - 12y &= 9
\end{align*}
\]
Topic 13.4 Guided Notebook

Topic 13.4 Applications of Linear Systems

Topic 13.4 Objective 1: Solve Related Quantity Applications Using Systems

What are the six steps for the **Problem-Solving Strategy for Applications Using Systems of Linear Equations**?

1.
2.
3.
4.
5.
6.

Example 1: Study the solution for Example 1 on page 13.4-4 and record the answer below.

The storage capacity of Deon’s external hard drive is 32 times that of his jump drive, a small portable memory device. Together, his two devices have 264 gigabytes of memory. What is the memory size of each device?

Compare the solution process for the same problem from Example 4 Topic 11.3. Use the link found on page 13.4-5.
Example 2: Complete Example 2 on page 13.4-6 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

The sum of the ages of Ben and his younger sister Annie is 18 years. The difference of their ages is 4 years. What is the age of each child?

Topic 13.4 Objective 2: Solve Geometry Applications Using Systems

Example 3: Complete Example 3 on page 13.4-7 on your own and check your solution.

The display panel of a graphing calculator has the shape of a rectangle with a perimeter of 264 millimeters. If the length of the display panel is 18 millimeters longer than the width, find its dimensions.

The measures of two complementary angles add to __________, while the measures of two supplementary angles add to __________.

Example 4: Complete Example 4 on page 13.4-8 and check your solution

Find the measures of two supplementary angles if the measure of the larger angle is 20 degrees less than three times the measure of the smaller angle.
Topic 13.4 Objective 3: Solve Uniform Motion Applications Using Systems

Example 5: Complete Example 5 on page 13.4-9 and check your solution. Recall using the table in Section 11.5 Examples 8 and 9 of this guided notebook.

Shawn is training for the Dirty Duo running-and-bicycling race. During a three-hour training session, his total distance cycling and running was 33 miles. If he cycled at a rate of 18 miles per hour and ran at a rate of 6 miles per hour, how much time did he spend doing each activity?

When motions work together the rates are ______________, but when they work against each other, the rates are ______________.

Example 6: Complete Example 6 on page 13.4-11 on your own. Check your answer by clicking on the link. Recall using the table in Section 11.5 Examples 8 and 9 of this guided notebook.

A jet plane travels 1950 miles in 3.9 hours going with the wind. On the return trip, the plane must fly into the wind and the travel time increases to 5 hours. Find the speed of the jet plane in still air and the speed of the wind. Assume the wind speed is the same for both trips.
Topic 13.4

Topic 13.4 Objective 4: Solve Mixture Applications Using Systems

Example 7: Complete Example 7 on page 13.4-14 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error. Recall using the illustrations in Section 11.6 Examples 8 and 9 of this guided notebook.

A shipping company delivered 160 packages one day. The cost of regular delivery is $6.50, and the cost for express delivery is $17.50. Total shipping revenue for the day was $1513. How many of each kind of delivery were made?

Example 8:
Complete Example 8 on page 13.4-16 on your own. Check your answer by clicking on the link. Recall using the illustrations in Section 11.6 Examples 8 and 9 of this guided notebook.

A chemist needs eight liters of a 50% alcohol solution but only has a 30% solution and an 80% solution available. How many liters of each solution should be mixed to form the needed solution?

Example 9:
Complete Example 9 on page 13.4-19 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Logan and Payton went to Culver’s for lunch. Logan ate two Butterburgers with cheese and a small order of fries for a total of 1801 calories. Payton ate one Butterburger with cheese and two small orders of fries for a total of 1313 calories. How many calories are in a Culver’s Butterburger with cheese? How many calories are in a small order of fries?
Topic 13.5 Guided Notebook
Topic 13.5 Systems of Linear Inequalities

Topic 13.5 Objective 1: Determine If an Ordered Pair Is a Solution to a System of Linear Inequalities in Two Variables

What is the definition of a **System of Linear Inequalities in Two Variables**? Illustrate with two examples.

What is the definition of a **Solution to a System of Linear Inequalities in Two Variables**?

Example 1:
Study the solution for Example 1 part a on page 13.5-4 and record the answer below. Complete parts b and c on your own and check your answers by clicking on the link.

Determine if each ordered pair is a solution to \[\begin{cases} 2x + y \geq -3 \\ x - 4y \leq 12 \end{cases} \].

a. (4,2) b. (2,–5) c. (0,–3)

Topic 13.5 Objective 2: Graph Systems of Linear Inequalities

What is the **graph of a system of linear inequalities in two variables**?
Topic 13.5

View the animation on page 13.5-6 for an overview of graphing systems of linear inequalities.

Record the Steps for Graphing Systems of Linear Inequalities.

1.

2.

Read and summarize CAUTION statement on page 13.5-6.

Example 3: Complete Example 3 on page 13.5-9 on your own. Check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Graph the system of linear inequalities.

\[
\begin{align*}
 x + y &< 4 \\
 x - 2y &< -2
\end{align*}
\]

How many solutions does a system of linear inequalities typically have?

What is an inconsistent system of inequalities?
Example 4: Study the solution for Example 4 on page 13.5-10 and record the answer below. Watch the video for a detailed solution.

Graph the system of linear inequalities.

\[
\begin{align*}
y &\leq -\frac{1}{3}x - 3 \\
y &> -\frac{1}{3}x + 2
\end{align*}
\]

Explain the solution region for the system below by viewing the link on page 13.5-14.

\[
\begin{align*}
x &\geq 0 \\
y &\geq 0
\end{align*}
\]

Example 6: Study the solution for Example 6 on page 13.5-14. Study the solution for Example 4 on page 13.5-10 and record the answer below. Watch the video for a detailed solution.
Topic 13.5 Objective 3: Solve Applications Involving Systems of Linear Inequalities

Example 7: Study the solution for Example 7 on page 13.5-16 and record your answer below. Watch the video for a detailed solution.

Savannah is planning a barbeque for her family and friends. She will spend $150 or less to buy hamburger patties that cost $3 per pound and boneless chicken breasts that cost $5 per pound. To limit waste, she will purchase at most 40 pounds of meat all together. Also, the amount of hamburger and chicken purchased must be non-negative. A system of linear inequalities that models this situation is

\[
\begin{align*}
3h + 5c & \leq 150 \\
h + c & \leq 40 \\
h & \geq 0 \\
c & \geq 0
\end{align*}
\]

Where \(h \) = pounds of hamburger patties and \(c \) = pounds of chicken breasts.

a. Graph the system of linear inequalities.

b. Can Savannah purchase 20 pounds of hamburger patties and 15 pounds of chicken breasts for the barbeque?

c. Can Savannah purchase 10 pounds of hamburger patties and 30 pounds of chicken breasts for the barbeque?

We will not cover Section 13.6 in this course.
Topic 14.1 Guided Notebook

Topic 14.1 Exponents

Topic 14.1 Objective 1: Simplify Exponential Expressions Using the Product Rule

Write down the definitions for the following terms.

Exponential expression

Base

Exponent

What is the Product Rule for Exponents?

Example 1: Study the solutions for Example 1 parts a and b on page 14.1-5 and record the answers below. Complete parts c and d on your own and check your answers by clicking on the link.

Use the product rule to simplify each expression.

a. $5^4 \cdot 5^6$

b. $x^5 \cdot x^7$

c. $y^3 \cdot y$

d. $b^3 \cdot b^5 \cdot b^4$

Read and summarize the CAUTION statement on page 14.1-5.

Example 2: Study the solutions for Example 2 parts a and b on page 14.1-6 and record the answers below. Complete part c on your own and check your answer by clicking on the link.

Simplify using the product rule.

a. $(4x^2)(7x^3)$

b. $(m^4 n^2)(m^3 n^6)$

c. $(-3a^5 b^3)(-8a^2 b)$
Topic 14.1 Objective 2: Simplify Exponential Expressions Using the Quotient Rule

What is the **Quotient Rule for Exponents**?

Example 3: Study the solutions for Example 3 parts a and b on page 14.1-8 and record the answers below. Complete parts c and d on your own and check your answers by clicking on the link.

Use the quotient rule to simplify each expression.

\[
a. \quad \frac{t^9}{t^5} \quad b. \quad \frac{7^5}{7^3} \quad c. \quad \frac{y^{24}}{y^{15}} \quad d. \quad \frac{(-4)^{14}}{(-4)^{11}}
\]

Example 4: Study the solutions for Example 4 parts a and b on page 14.1-9 and record the answers below. Complete part c on your own and check your answer by clicking on the link.

Simplify using the quotient rule.

\[
a. \quad \frac{15x^6}{3x^2} \quad b. \quad \frac{a^4b^6c^5}{a^2b^3c} \quad c. \quad \frac{4m^6n^7}{12m^5n^2}
\]

Topic 14.1 Objective 3: Use the Zero-Power Rule

What is the **Zero-Power Rule**?

Example 5: Study the solutions for Example 5 parts a - e on page 14.1-11 and record the answers below.

Simplify using the zero-power rule.

\[
a. \quad 6^0 \quad b. \quad (-3)^0 \quad c. \quad -3^0 \quad d. \quad (2x)^0 \quad e. \quad 2x^0
\]
Topic 14.1 Objective 4: Use the Power-to-Power Rule

What is the **Power-to-Power Rule**?

Example 6: Study the solution for Example 6 part a on page 14.1-14 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Simplify using the power-to-power rule.

a. \((y^5)^6\)
b. \([-2^3]^5\)

Topic 14.1 Objective 5: Use the Product-to-Power Rule

What is the **Product-to-Power Rule**?

Example 7: Study the solutions for Example 7 parts a and b on page 14.1-16 and record the answers below. Complete parts c and d on your own and check your answers.

Simplify using the product-to-product rule.

a. \((mn)^8\)
b. \((x^2y)^5\)
c. \((3y)^4\)
d. \((-4p^5q^3)^2\)

Topic 14.1 Objective 6: Use the Quotient-to-Power Rule

What is the **Quotient-to-Power Rule**?
Example 8: Study the solutions for Example 8 parts a and b on page 14.1-18 and record the answers below. Complete parts c and d on your own and check your answers.

Simplify using the quotient-to-power rule.

\[\begin{align*}
\text{a. } & \left(\frac{m}{n} \right)^9 \\
\text{b. } & \left(\frac{x^2}{y^5} \right)^4 \\
\text{c. } & \left(\frac{x}{2} \right)^5 \\
\text{d. } & \left(\frac{3x^2}{5y^5} \right)^3
\end{align*} \]

Topic 14.1 Objective 7: Simplify Exponential Expressions Using a Combination of Rules

List the four conditions for an exponential expression to be considered simplified.

Write down the Rules for Exponents.

- **Product Rule:**
- **Power-to-Power Rule:**
- **Quotient Rule:**
- **Product-to-Power Rule:**
- **Zero-Power Rule:**
- **Quotient-to-Power Rule:**

Example 9: Study the solutions for Example 9 parts a and b on page 14.1-20 and record the answers below. Complete parts c and d on your own and check your answers.

Simplify using the rules for exponents.

\[\begin{align*}
\text{a. } & (c^3)^5(c^2)^6 \\
\text{b. } & \left(\frac{15x^8y^5}{3x^6y} \right)^2 \\
\text{c. } & (-2w^3z^2)(-2wz^2)^4 \\
\text{d. } & \frac{(4m^2n^0)(2n^3)^2}{8mn^5}
\end{align*} \]
Topic 14.2 Guided Notebook
Topic 14.2 Introduction to Polynomials

Topic 14.2 Objective 1: Classify Polynomials

What is a simplified term?

What is the definition of a Monomial?

Which of the terms from the interactive video on page 14.253 is a monomial? Why?

Write down the definitions for the following terms.

Polynomial

Terms of the polynomial

Simplified polynomial

Polynomials in one variable

How many terms do each of the following have? Give an example of each.

Monomial

Binomial

Trinomial

Polynomial
Example 1: Complete Example 1 parts a – d on page 14.2-5 and check your answers.

Classify each polynomial as a monomial, binomial, trinomial, or none of these.

a. $5x - 7$
 b. $\frac{1}{3}x^2$
 c. $5x^3 - 7x^2 + 4x + 1$
 d. $-2x^3 - 5x^2 + 8x$

Topic 14.2 Objective 2: Determine the Degree and Coefficient of a Monomial

What is the definition of the **Degree of a Monomial**?

What is the degree of a constant term? Why?

What is the definition of the **Coefficient of a Monomial**?

Example 2: Study the solutions for Example 2 parts a–c on page 14.2-6 and record the answers below. Complete parts d–f on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Determine the coefficient and degree of each monomial.

a. $4.6x^3$
 b. $7x$
 c. x^2y^4
 d. 12
 e. $\frac{3}{4}x^2yz^3$
 f. $-2xyz^7$

Topic 14.2 Objective 3: Determine the Degree and Leading Coefficient of a Polynomial

What is the definition of the **Degree of a Polynomial**?

What does it mean for a polynomial to be written in **descending order**?

What is **standard form** for polynomials?
Write down the definition of the **Leading Coefficient of a Polynomial in One Variable**.

Example 3: Study the solution for Example 3 part a on page 14.2-9 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Write each polynomial in standard form. Then find its degree and leading coefficient.

a. \(4.2m - 3m^2 + 1.8 - 7m^3\)
b. \(\frac{2}{3}x^3 - 3x^2 + 5 - x^4 + \frac{1}{4}x\)

Topic 14.2 Objective 4: Evaluate a Polynomial for a Given Value

Example 4: Study the solutions for Example 4 parts a and b on page 14.2-10 and record the answers below. Complete parts c and d on your own and check your answers.

Evaluate the polynomial \(x^3 + 3x^2 + 4x - 5\) for the given values of \(x\).

a. \(x = -2\)
b. \(x = 0\)
c. \(x = 2\)
d. \(x = \frac{5}{2}\)

Topic 14.2 Objective 5: Simplify Polynomials by Combining Like Terms

How do you simplify a polynomial?
Example 5: Study the solutions for Example 5 parts a and b on page 14.2-12 and record the answers below. Complete parts c–e on your own and check your answers.

Simplify each polynomial by combining like terms.

a. \(3x^2 + 8x - 4x + 2\)

b. \(2.3x - 3 - 5x + 8.4\)

c. \(2x + 3x^2 - 6 + x^2 - 2x + 9\)

d. \(\frac{2}{3}x^2 + \frac{1}{5}x - \frac{1}{10}x - \frac{1}{6}x^2 + \frac{1}{4}\)

e. \(6x^3 + x^2 - 7\)
Topic 14.3 Guided Notebook

Topic 14.3 Adding and Subtracting Polynomials

Topic 14.3 Objective 1: Add Polynomials

What is the procedure for *Adding Polynomials*?

Example 2: Study the solutions for Example 1 and Example 2 part a. Complete parts b and c on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Add.

a. \((y^2 + 3y + 7) + (y^2 - 3y - 2)\)

b. \((10p^3 + 7p - 13) + (5p^2 - 4p)\)

c. \((3m^3 + m^2 - 8) + (2m^3 - 4m^2 + 3m) + (5m^2 + 4)\)

Topic 14.3 Objective 2: Find the Opposite of a Polynomial

In Topic 10.1 we learned that a ______________________________ can be used to represent the ______________________ of a real number.

What is the “opposite” of the polynomial \(x^2 - 5x + 7\)?

What are **Opposite Polynomials**?
Summarize the TIP found on page 14.3-6.

Example 3: Study the solutions for Example 3 parts a – c on page 14.3-6 and record the answers below.

Find the opposite of each polynomial

a. \(x^2 + 6x + 8 \)
b. \(8y - 27 \)
c. \(-m^3 - 5m^2 + m + 7 \)

Topic 14.3 Objective 3: Subtract Polynomials

What is the procedure for **Subtracting Polynomials**?

Example 4: Study the solution for Example 4 part a on page 14.3-8 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Subtract.

a. \((9x + 13) - (6x - 4)\)
b. \((3a^2 + 5a - 8) - (-2a^2 + a - 7)\)
Topic 14.4 Guided Notebook
Topic 14.4 Multiplying Polynomials

Topic 14.4 Objective 1: Multiply Monomials

What is the procedure for **Multiplying Monomials**?

Example 1:
Study the solution for Example 1 part a on page 14.4-3 and record your answer below. Complete parts b and c on your own and check your answers by clicking on the popup.

Multiply.

a. \((6x^3)(7x^2)\)
b. \((-\frac{3}{4}x^2 \cdot \frac{2}{9}x^4)\)
c. \((3x^2)(-0.2x^3)\)

Topic 14.4 Objective 2: Multiply a Polynomial by a Monomial

What is the procedure for **Multiplying Polynomials by Monomials**?

Example 2: Study the solution for Example 2 part a on page 14.4-4 and record your answer below. Complete part b on your own and check your answer by clicking on the popup.

Multiply.

a. \(3x(4x - 5)\)
b. \(-4x^2(3x^2 + x - 7)\)
Example 3:
Complete Example 3 parts a and b on page 14.4-5 on your own. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Multiply.

b. \(\frac{1}{2}x^2(4x^2 - 6x + 2) \)

b. \(0.25x^3(6x^3 - 10x^2 + 4x - 7) \)

Topic 14.4 Objective 3: Multiply Two Binomials

What is the procedure for **Multiplying Two Binomials**?

Example 4: Study the solutions for Example 4 parts a and b on page 14.4-6 and record your answers below. Complete part c on your own and check your answer by clicking on the link.

Multiply using the distributive property twice.

a. \((x + 3)(x + 2) \)
b. \((x + 6)(x - 2) \)
c. \((x - 4)(x - 5) \)

The **FOIL method** is just an acronym to remind you of the steps of the distributive property. List what the letters FOIL represent.
Example 5: Study the solution for Example 5 part a on page 14.4-8 and record your answer below. Complete parts b and c on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Multiply.

a. \((x - 4)(2x + 3)\)
b. \(\left(\frac{1}{2}x - 6\right)(3x - 4)\)
c. \((5x + 7)(4x + 3)\)

Read and summarize the CAUTION statement on page 14.4-10.

We will not be covering Objective 4.
Topic 15.1 Guided Notebook

Topic 15.1 Greatest Common Factor and Factoring by Grouping

Topic 15.1 Objective 1: Find the Greatest Common Factor of a Group of Integers

Write down the definitions for the following terms.

Factoring

Factored form

Factor (as a noun)

Factor (as a verb)

Factor over the integers

Greatest common factor

Record the steps for **Finding the GCF of a Group of Integers**.

1.

2.

3.

Example 1:

Study the solutions for Example 1 parts a and b on page 15.1-4 and record the answers below. Complete part c on your own and check your answer by clicking on the link. If your answer is incorrect, watch the video to find your error.

Find the GCF of each group of integers.

a. 36 and 60

b. 28 and 45

c. 75, 90, and 105
Topic 15.1 Objective 2: Find the Greatest Common Factor of a Group of Monomials

What is the greatest common factor (GCF) of a group of monomials?

What are the Common Variable Factors for a GCF?

Example 2: Study the solutions for Example 2 parts a – c on page 15.1-6 and record the answers below.
Find the GCF of each group of exponential expressions.

a. x^4 and x^7

b. y^3, y^6, and y^9

c. $w^6 z^2$, $w^3 z^5$, and $w^5 z^4$

What is the three-step process for Finding the GCF of a Group of Monomials?

1.

2.

3.

Example 3:
Study the solutions for Example 3 parts a and b on page 15.1-8 and record the answers below. Complete parts c and d on your own and check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.
Find the GCF of each group of monomials.

a. $14x^6$ and $21x^8$

b. $6a^2$, $10ab$, and $14b^2$

c. $40x^5 y^6$, $-48x^9 y$, and $24x^2 y^4$

d. $14m^3 n^2$, $6m^5 n$, and $9m^4$
Topic 15.1 Objective 3: Factor Out the Greatest Common Factor from a Polynomial

What is the greatest common factor (GCF) of a polynomial?

What is the four-step process for factoring out the GCF from a polynomial?

1.

2.

3.

4.

Example 4: Study the solution for Example 4 part a on page 15.1-11 and record the answer below. Complete parts b and c on your own and check your answers.

Factor out the GCF from each binomial

a. \(6x + 12\)
b. \(w^5 + w^4\)
c. \(8y^3 - 12y^2\)

Read and summarize the CAUTION statement on page 15.1-13.

Example 5: Study the solution for Example 5 part a on page 15.1-13 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Factor out the GCF from each polynomial

a. \(9p^5 + 18p^4 + 54p^3\)
b. \(10a^4b^6 - 15a^3b^7 + 35a^2b^8\)
Example 6: Study the solution for Example 6 on page 15.1-14 and record the answer below. Factor out the negative sign with the GCF. \(-8x^3 + 28x^2 - 20x\)

Example 7: Study the solution for Example 7 part a page 15.1-16 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Factor out the common binomial factor as the GCF.

a. \(4x(y + 5) + 11(y + 5)\)
b. \(7x(x + y) - (x + y)\)

Topic 15.1 Objective 4: Factor by Grouping

What is the four-step process for Factoring a Polynomial by Grouping?

1.

2.

3.

4.

Example 8: Study the solutions for Example 8 parts a and b on page 15.1-18. Complete parts c and d on your own and check your answers by clicking on the link.

Factor by grouping.

c. \(3m^2 + 3m - 2mn - 2n\)
d. \(4w^3 - 14w^2 - 10w + 35\)

Read and summarize the CAUTION statement on page 15.1-20.
Metacognitive Skills: MDEV 090 Exam 4

Metacognitive skills refer to the ability to judge how well you have learned something and to effectively direct your own learning and studying. This is a self-evaluation tool designed to help you focus your studying and to improve your metacognitive skills with regards to this math class.

<table>
<thead>
<tr>
<th>Topic or Skill</th>
<th>Before Studying</th>
<th>After Studying</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3 Solve Systems of Linear Equations by Elimination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.3 Solve Special Systems of Elimination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.4 Solve Related Quantity Applications Using Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.4 Geometry Applications Using Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.4 Solve Uniform Motion Applications Using Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.4 Solve Mixture Applications Using Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.5 Determine If an Ordered Pair is a Solutions to a System of Linear Inequalities in Two Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.5 Graph Systems of Linear Inequalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.5 Solve Applications Involving Systems of Linear Inequalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1 Simplify Exponential Expressions Using the Product Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1 Simplify Exponential Expressions Using the Quotient Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1 Use the Zero-Power Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1 Use the Power-to-Power Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1 Use the Product-to-Power Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1 Use the Quotient-to-Power Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1 Simplify Exponential Expressions Using a Combination of Rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.2 Classify Polynomials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.2 Determine the Degree and Coefficient of a Monomial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.2 Determine the Degree and Leading Coefficient of a Polynomial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.2 Evaluate a Polynomial for a Given Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.2 Simplify Polynomials by Combining Like Terms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3 Add Polynomials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3 Find the Opposite of a Polynomial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3 Subtract Polynomials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4 Multiply Monomials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4 Multiply a Polynomial by a Monomial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4 Multiply Two Binomials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.1 Find the Greatest Common Factor of a Group of Integers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.1 Find the Greatest Common Factor of a Group of Monomials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.1 Factor Out the Greatest Common Factor from a Polynomial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.1 Factor by Grouping</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exam 4 Topics

Use the following scale to complete the ‘Before Studying’ column and then the ‘After Studying’ column once you study.

5 I am confident I can do any problems in this category correctly.
4 I am confident I can do most of the problems in this category correctly.
3 I understand how to do the problems in this category, but I still make a lot of mistakes.
2 I feel unsure about how to do these problems.
1 I know I don’t understand how to do these problems.

Refer to this assessment after your test and circle any of the ratings you would change – this identifies the “disconnects” between what you thought you knew well and what you actually knew well.
Topic 15.2 Guided Notebook

Topic 15.2 Factoring Trinomials of the Form $x^2 + bx + c$

Topic 15.2 Objective 1: Factor Trinomials of the Form $x^2 + bx + c$

Watch the animation about factoring trinomials on page 15.2-3. Record the steps for **Factoring Trinomials of the Form** $x^2 + bx + c$.

1.

2.

3.

Example 1: Study the solution for Example 1 part a on page 15.2-4 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Factor each trinomial.

a. $x^2 + 11x + 18$

b. $x^2 + 13x + 30$

What is a **prime number**?

What is the definition of a **Prime Polynomial**?

Read and summarize the CAUTION statement on page 15.2-6.

Example 2: Study the solution for Example 2 on page 15.2-7 and record your answer below.

Factor $x^2 + 14x + 20$

Example 3: Study the solution for Example 3 part a on page 15.2-8 and record the answer below. Complete parts b and c on your own and check your answers by clicking on the link.
Factor.

a. $x^2 - 13x + 40$
 b. $m^2 - 5m - 36$
 c. $w^2 + 7w - 60$

Topic 15.2 Objective 2: Factor Trinomials of the Form $x^2 + bxy + cy^2$

Example 4: Study the solution for Example 4 part a on page 15.2-10 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Factor.

a. $x^2 + 10xy + 24y^2$
 b. $m^2 + 22mn - 48n^2$

Topic 15.2 Objective 3: Factor Trinomials of the Form $x^2 + bx + c$ after Factoring Out the GCF

When is a polynomial factored completely?

Example 5: Study the solution for Example 5 part a on page 15.2-12 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Factor completely.

a. $4x^2 - 28x - 32$
 b. $2y^3 - 36y^2 + 64y$

Example 6: Complete Example 6 on page 15.1-14 on your own. Check your answer by clicking on the link.

Factor $-x^2 + 3x + 10$
Topic 15.3 Guided Notebook

Topic 15.3 Factoring Trinomials of the Form $ax^2 + bx + c$ Using Trial and Error

Topic 15.3 Objective 1: Factor Trinomials of the Form $ax^2 + bx + c$ Using Trial and Error

Watch the animation about factoring trinomials on page 15.3-3 and take notes below.

What is the four-step strategy for **Factoring Trinomials of the Form $ax^2 + bx + c$**?

1.

2.

3.

4.

Example 1: Study the solution for Example 1 on page 15.3-5 and record the answer below.

Factor $3x^2 + 7x + 2$.

Why doesn’t the order of the binomial factors matter?
Example 2: Study the solution for Example 2 on page 15.3-6 and record the answer below.

Factor $5x^2 + 17x + 6$.

Example 3: Complete Example 3 parts a and b on page 15.3-8 on your own. Check your answers by clicking on the link.

Factor.

a. $4x^2 - 5x - 6$

b. $12n^2 - 16n + 5$

Example 4: Study the solution for Example 4 on page 15.3-10 and record the answer below.

Factor $2y^2 - 19y + 15$.

We will not be covering Objective 2.
Topic 15.4 Guided Notebook

Topic 15.4 Factoring Trinomials of the Form $ax^2 + bx + c$ Using the ac Method

Topic 15.4 Objective 1: Factor Trinomials of the Form $ax^2 + bx + c$ Using the ac Method

Record the steps for **The ac Method for Factoring Trinomials of the Form $ax^2 + bx + c$**

1.

2.

3.

4.

5.

What are the two other names for the ac Method?

Example 1: Study the solution for Example 1 on page 15.4-4 and record the answer below.

Factor $3x^2 + 14x + 8$ using the ac method.
Example 2: Study the solution for Example 2 on page 15.4-6 and record the answer below.

Factor $2x^2 - 3x - 20$ using the ac method.

Example 3: Complete Example 3 parts a – c on page 15.4-7 on your own. Check your answers by clicking on the link.

Factor each trinomial using the ac method. If the trinomial is prime, state this as your answer.

b. $2x^2 + 9x - 18$

c. $6x^2 - 23x + 20$

d. $5x^2 + x + 6$

We will not be covering Objectives 2 or 3 of this section.
Topic 15.7 Guided Notebook
Topic 15.7 Solving Polynomial Equations by Factoring

Topic 15.7 Objective 1: Solve Quadratic Equations by Factoring

Write down the definitions for the following terms.

Polynomial equation

Standard form

Degree of a polynomial equation

Write the definition of a **Quadratic Equation**.

What is the **Zero Product Property**?

Why does the Zero Product Property only work when the product equals 0?
Example 1: Study the solution for Example 1 part a on page 15.7-5 and record the answer below. Complete part b on your own and check your answer by clicking on the link.

Solve each equation.

a. \((x + 10)(x - 3) = 0\)
b. \(x(3x + 5) = 0\)

What is the four-step process for Solving Polynomial Equations by Factoring?

1.

2.

3.

4.

Example 2: Study the solution for Example 2 part a on page 15.7-6 and record the answer below. Complete part b on your own and check your answer by clicking on the link. For part b, the first step is to factor out the negative along with the greatest common factor of 4.

Solve each equation by factoring.

a. \(z^2 + 4z - 12 = 0\)
b. \(-4x^2 + 28x - 40 = 0\)

Read and summarize the CAUTION statement on page 15.7-8.
Example 3: Study the solution for Example 3 part a on page 15.7-8 and record the answer below. Complete parts b and c on your own and check your answers by clicking on the link.

Solve each equation by factoring.

a. \(9w^2 + 64 = 48w \)

b. \(4m^2 = 49 \)

c. \(3x(x - 2) = 2 - x \)

Example 4: Complete Example 4 on page 15.7-11 parts a and b on your own. Check your answers by clicking on the link. If your answers are incorrect, watch the video to find your error.

Solve each equation by factoring.

a. \((x + 2)(x - 5) = 18 \)

b. \((x + 3)(3x - 5) = 5(x + 1) - 10 \)

We will not be covering Objective 2 in this course.
Topic 15.8 Guided Notebook
Topic 15.8 Applications of Quadratic Equations

We will be covering only Objectives 3 and 4 of this section.

Topic 15.8 Objective 3: Solve Application Problems Using the Pythagorean Theorem

Write down the definition for the following terms.

Right triangles

Right angle

Hypotenuse

Legs

What is the **Pythagorean Theorem**?

Example 3: Complete Example 3 on page 15.8-8 on your own and check your solution.
A wire is attached to a cell phone tower for support. The length of the wire is 40 meters less than twice the height of the tower. The wire is fixed to the ground at a distance that is 40 meters more than the height of the tower. Find the length of the wire.
Topic 15.8

Read and summarize the CAUTION statement on page 15.8-9.

Topic 15.8 Objective 4: Solve Application Problems Involving Quadratic Models

Example 4: Study the solution for Example 4 on page 15.8-10 and record the answer below. Watch the video for a detailed solution.

The Grand Canyon Skywalk sits 4000 ft above the Colorado River. If an object is dropped from the observation deck, its height \(h \), in feet after \(t \) seconds, is given by

\[
h = -16t^2 + 4000.
\]

How long will it take for the object to be 400 feet above the Colorado River?
Metacognitive Skills: MDEV 090 Final exam

The final exam is a cumulative exam that will cover all of the topics from the first four exams in addition to the following topics which were covered since Exam 4.

Use the following scale to complete the ‘Before Studying’ column and then the ‘After Studying’ column once you study.

5 I am confident I can do any problems in this category correctly.
4 I am confident I can do most of the problems in this category correctly.
3 I understand how to do the problems in this category, but I still make a lot of mistakes.
2 I feel unsure about how to do these problems.
1 I know I don’t understand how to do these problems.

<table>
<thead>
<tr>
<th>Topic or Skill</th>
<th>Before Studying</th>
<th>After Studying</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2 Factor Trinomials of the Form (x^2 + bx + c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.2 Factor Trinomials of the Form (x^2 + bxy + cy^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.2 Factor Trinomials of the Form (x^2 + bx + c) after Factoring Out the GDF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.3 Factor Trinomials of the Form (ax^2 + bx + c) Using Trial and Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.4 Factor Trinomials of the Form (ax^2 + bx + c) Using the ac Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.7 Solve Quadratic Equations by Factoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.8 Solve Application Problems Using the Pythagorean Theorem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.8 Solve Application Problems Involving Quadratic Models</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>